Apprentissage par renforcementEn intelligence artificielle, plus précisément en apprentissage automatique, l'apprentissage par renforcement consiste, pour un agent autonome ( robot, agent conversationnel, personnage dans un jeu vidéo), à apprendre les actions à prendre, à partir d'expériences, de façon à optimiser une récompense quantitative au cours du temps. L'agent est plongé au sein d'un environnement et prend ses décisions en fonction de son état courant. En retour, l'environnement procure à l'agent une récompense, qui peut être positive ou négative.
Système de récompenseLe système de récompense / renforcement aussi appelé système hédonique, est un système fonctionnel fondamental des mammifères, situé dans le cerveau, le long du faisceau médian du télencéphale. Ce système de « récompenses » est indispensable à la survie, car il fournit la motivation nécessaire à la réalisation d'actions ou de comportements adaptés, permettant de préserver l'individu et l'espèce (prise de risque nécessaire à la survie, recherche de nourriture, reproduction, évitement des dangers, etc.).
Plasticité fonction du temps d'occurrence des impulsionsLa (en Spike-timing-dependent plasticity, STDP) est un processus de modification du poids des synapses. Cette modification dépend du moment de déclenchement du potentiel d'action dans les neurones pré- et post-synaptique. Ce processus permettrait d'expliquer partiellement le développement cérébral et la mémorisation, en provoquant potentialisation à long terme (en Long-term potentiation, LTP) et dépression à long terme (en Long-term depression, LTD) des synapses.
Potentiel d'inversionLe potentiel d'inversion pour un canal ionique, ou plus généralement pour un courant ionique, est la valeur du potentiel de membrane pour laquelle le flux ionique est nul. Il s'agit en fait de la valeur de potentiel de membrane à laquelle une espèce ionique est en équilibre électro-osmotique. C’est-à-dire que pour ce potentiel de membrane, la force électrique due à la différence de potentiel de part et d'autre de la membrane et la force chimique due à la différence de concentration (ou force osmotique) sont égales et de sens opposés.
Synapsethumb|400px|Synapse entre deux neurones. La synapse (du grec , « contact, point de jonction », dérivé de , « joindre, connecter ») est une zone de contact fonctionnelle qui s'établit entre deux neurones, ou entre un neurone et une autre cellule (cellules musculaires, récepteurs sensoriels...). Elle assure la conversion d'un potentiel d'action déclenché dans le neurone présynaptique en un signal dans la cellule postsynaptique. On estime, pour certains types cellulaires (par exemple cellule pyramidale, cellule de Purkinje.
Excitatory synapseAn excitatory synapse is a synapse in which an action potential in a presynaptic neuron increases the probability of an action potential occurring in a postsynaptic cell. Neurons form networks through which nerve impulses travels, each neuron often making numerous connections with other cells of neurons. These electrical signals may be excitatory or inhibitory, and, if the total of excitatory influences exceeds that of the inhibitory influences, the neuron will generate a new action potential at its axon hillock, thus transmitting the information to yet another cell.
Réseau de neurones de HopfieldLe réseau de neurones d'Hopfield est un modèle de réseau de neurones récurrents à temps discret dont la matrice des connexions est symétrique et nulle sur la diagonale et où la dynamique est asynchrone (un seul neurone est mis à jour à chaque unité de temps). Il a été popularisé par le physicien John Hopfield en 1982. Sa découverte a permis de relancer l'intérêt dans les réseaux de neurones qui s'était essoufflé durant les années 1970 à la suite d'un article de Marvin Minsky et Seymour Papert.
Arborisation terminaleL'arborisation terminale est l'extrémité ramifiée de l'axone d'un neurone. Les « boutons » synaptiques sont à l'extrémité de cette arborisation terminale, là où se trouvent les synapses. L'arborisation terminale de l'axone est riche en vésicules synaptiques contenant les neurotransmetteurs. Les terminaisons axoniques (également appelées « boutons synaptiques », « boutons terminaux » ou « pieds terminaux ») sont les terminaisons distales des télodendrites (branches) d'un axone.
Vésicule synaptiqueLes vésicules synaptiques sont de petits compartiments des terminaux présynaptiques des neurones, stockant des neurotransmetteurs qui sont susceptibles d'être libérés dans l'espace intersynaptique à la suite de l'arrivée d'un potentiel d'action dépolarisant et l'augmentation des niveaux calciques intracellulaires. Le nombre ou la taille du pool de vésicules synaptiques est variable selon le type de neurones considérés (quelques dizaines pour les petites synapses telles que celles trouvées dans l'hippocampe).
Apprentissage non superviséDans le domaine informatique et de l'intelligence artificielle, l'apprentissage non supervisé désigne la situation d'apprentissage automatique où les données ne sont pas étiquetées (par exemple étiquetées comme « balle » ou « poisson »). Il s'agit donc de découvrir les structures sous-jacentes à ces données non étiquetées. Puisque les données ne sont pas étiquetées, il est impossible à l'algorithme de calculer de façon certaine un score de réussite.