Microscopie à super-résolutionLa microscopie à super-résolution est un ensemble de techniques permettant d'imager en microscopie optique des objets à une résolution à l’échelle nanométrique. Elle se démarque par le fait que la résolution obtenue n'est plus limitée par le phénomène de diffraction. Du fait de la diffraction de la lumière, la résolution d’un microscope optique conventionnel est en principe limitée, indépendamment du capteur utilisé et des aberrations ou imperfections des lentilles.
Super-résolutionEn traitement du signal et en , la super-résolution désigne le processus qui consiste à améliorer la résolution spatiale, c'est-à-dire le niveau de détail, d'une image ou d'un système d'acquisition. Cela regroupe des méthodes matérielles qui visent à contourner les problèmes optiques et autres difficultés physiques rencontrées lors de l'acquisition d'image, ainsi que des techniques algorithmiques qui, à partir d'une ou de plusieurs images déjà capturées, créent une image de meilleure résolution.
Image resolutionImage resolution is the level of detail an holds. The term applies to digital images, film images, and other types of images. "Higher resolution" means more image detail. Image resolution can be measured in various ways. Resolution quantifies how close lines can be to each other and still be visibly resolved. Resolution units can be tied to physical sizes (e.g. lines per mm, lines per inch), to the overall size of a picture (lines per picture height, also known simply as lines, TV lines, or TVL), or to angular subtense.
Régularisation (mathématiques)vignette|Les courbes bleues et vertes correspondent à deux modèles differents, tous les deux étant des solutions possibles du problème consistant à décrire les coordonnées de tous les points rouges. L'application d'une régularisation favorise le modèle moins complexe correspondant à la courbe verte. Dans le domaine des mathématiques et des statistiques, et plus particulièrement dans le domaine de l'apprentissage automatique, la régularisation fait référence à un processus consistant à ajouter de l'information à un problème, s'il est mal posé ou pour éviter le surapprentissage.
Ridge regressionRidge regression is a method of estimating the coefficients of multiple-regression models in scenarios where the independent variables are highly correlated. It has been used in many fields including econometrics, chemistry, and engineering. Also known as Tikhonov regularization, named for Andrey Tikhonov, it is a method of regularization of ill-posed problems. It is particularly useful to mitigate the problem of multicollinearity in linear regression, which commonly occurs in models with large numbers of parameters.
Regularized least squaresRegularized least squares (RLS) is a family of methods for solving the least-squares problem while using regularization to further constrain the resulting solution. RLS is used for two main reasons. The first comes up when the number of variables in the linear system exceeds the number of observations. In such settings, the ordinary least-squares problem is ill-posed and is therefore impossible to fit because the associated optimization problem has infinitely many solutions.
Méthode des moindres carrésLa méthode des moindres carrés, indépendamment élaborée par Legendre et Gauss au début du , permet de comparer des données expérimentales, généralement entachées d’erreurs de mesure, à un modèle mathématique censé décrire ces données. Ce modèle peut prendre diverses formes. Il peut s’agir de lois de conservation que les quantités mesurées doivent respecter. La méthode des moindres carrés permet alors de minimiser l’impact des erreurs expérimentales en « ajoutant de l’information » dans le processus de mesure.
Lasso (statistiques)En statistiques, le lasso est une méthode de contraction des coefficients de la régression développée par Robert Tibshirani dans un article publié en 1996 intitulé Regression shrinkage and selection via the lasso. Le nom est un acronyme anglais : Least Absolute Shrinkage and Selection Operator. Bien que cette méthode fut utilisée à l'origine pour des modèles utilisant l'estimateur usuel des moindres carrés, la pénalisation lasso s'étend facilement à de nombreux modèles statistiques tels que les modèles linéaires généralisés, les modèles à risque proportionnel, et les M-estimateurs.
Sélection de caractéristiqueLa sélection de caractéristique (ou sélection d'attribut ou de variable) est un processus utilisé en apprentissage automatique et en traitement de données. Il consiste, étant donné des données dans un espace de grande dimension, à trouver un sous-sensemble de variables pertinentes. C'est-à-dire que l'on cherche à minimiser la perte d'information venant de la suppression de toutes les autres variables. C'est une méthode de réduction de la dimensionnalité. Extraction de caractéristique Catégorie:Apprentissage
Bruitvignette|Mesure du niveau de bruit à proximité d'une route à l'aide d'un sonomètre. Le bruit est un son jugé indésirable. Les sons qui ne se comprennent pas comme de la parole ou de la musique s'assimilent souvent au bruit, même si leur perception n'est pas désagréable, comme le montre l'expression bruit ambiant. Du point de vue de l'environnement, les sons indésirables sont une nuisance, souvent à l'origine de litiges. Ceux qui s'en plaignent les assimilent à une pollution.