Modèle numérique de terrainUn modèle numérique de terrain (MNT) est une représentation de la topographie (altimétrie et/ou bathymétrie) d’une zone terrestre (ou d'une planète tellurique) sous une forme adaptée à son utilisation par un calculateur numérique (ordinateur). droite|300px|vignette|Le Modèle Numérique de Terrain (MNT) ne prend pas en compte les éléments situés au-dessus de la surface contrairement à un Modèle Numérique d'Élévation (MNE) Un modèle numérique de terrain (MNT) est une représentation en 2,5D de la surface d'un terrain ou d'une planète, créée à partir des données d'altitude du terrain.
Wavelet transformIn mathematics, a wavelet series is a representation of a square-integrable (real- or complex-valued) function by a certain orthonormal series generated by a wavelet. This article provides a formal, mathematical definition of an orthonormal wavelet and of the integral wavelet transform. A function is called an orthonormal wavelet if it can be used to define a Hilbert basis, that is a complete orthonormal system, for the Hilbert space of square integrable functions.
Ondelettethumb|Ondelette de Daubechies d'ordre 2. Une ondelette est une fonction à la base de la décomposition en ondelettes, décomposition similaire à la transformée de Fourier à court terme, utilisée dans le traitement du signal. Elle correspond à l'idée intuitive d'une fonction correspondant à une petite oscillation, d'où son nom. Cependant, elle comporte deux différences majeures avec la transformée de Fourier à court terme : elle peut mettre en œuvre une base différente, non forcément sinusoïdale ; il existe une relation entre la largeur de l'enveloppe et la fréquence des oscillations : on effectue ainsi une homothétie de l'ondelette, et non seulement de l'oscillation.
GéomorphométrieLa géomorphométrie mesure les formes du relief. Il s'agit d'une branche de la géographie physique qui crée des outils de mesure exploitables en Géomorphologie et Topographie. Un certain nombre de critères géomorphométriques ont été développés, par exemple ceux définis en chaque point d'une surface topographique. Parmi les plus courants sont les suivants : l'altitude, la pente, la courbure des lignes de niveau, l'exposition d'un point (N-E-S-O).
Discrete wavelet transformIn numerical analysis and functional analysis, a discrete wavelet transform (DWT) is any wavelet transform for which the wavelets are discretely sampled. As with other wavelet transforms, a key advantage it has over Fourier transforms is temporal resolution: it captures both frequency and location information (location in time). Haar wavelet The first DWT was invented by Hungarian mathematician Alfréd Haar. For an input represented by a list of numbers, the Haar wavelet transform may be considered to pair up input values, storing the difference and passing the sum.
Transformation de Fourierthumb|Portrait de Joseph Fourier. En mathématiques, plus précisément en analyse, la transformation de Fourier est une extension, pour les fonctions non périodiques, du développement en série de Fourier des fonctions périodiques. La transformation de Fourier associe à toute fonction intégrable définie sur R et à valeurs réelles ou complexes, une autre fonction sur R appelée transformée de Fourier dont la variable indépendante peut s'interpréter en physique comme la fréquence ou la pulsation.
Terrain cartographyTerrain cartography or relief mapping is the depiction of the shape of the surface of the Earth on a map, using one or more of several techniques that have been developed. Terrain or relief is an essential aspect of physical geography, and as such its portrayal presents a central problem in cartographic design, and more recently geographic information systems and geovisualization. The most ancient form of relief depiction in cartography, hill profiles are simply illustrations of mountains and hills in profile, placed as appropriate on generally small-scale (broad area of coverage) maps.
Continuous wavelet transformIn mathematics, the continuous wavelet transform (CWT) is a formal (i.e., non-numerical) tool that provides an overcomplete representation of a signal by letting the translation and scale parameter of the wavelets vary continuously. The continuous wavelet transform of a function at a scale (a>0) and translational value is expressed by the following integral where is a continuous function in both the time domain and the frequency domain called the mother wavelet and the overline represents operation of complex conjugate.
Ondelette de HaarL'ondelette de Haar, ou fonction de Rademacher, est une ondelette créée par Alfréd Haar en 1909. On considère que c'est la première ondelette connue. Il s'agit d'une fonction constante par morceaux, ce qui en fait l'ondelette la plus simple à comprendre et à implémenter. L'ondelette de Haar peut être généralisée par ce qu'on appelle le système de Haar. La fonction-mère des ondelettes de Haar est une fonction constante par morceaux : La fonction d'échelle associée est alors une fonction porte : Le système de Haar est une suite de fonctions continues par morceaux, appartenant à pour .
ElevationThe elevation of a geographic location is its height above or below a fixed reference point, most commonly a reference geoid, a mathematical model of the Earth's sea level as an equipotential gravitational surface (see Geodetic datum § Vertical datum). The term elevation is mainly used when referring to points on the Earth's surface, while altitude or geopotential height is used for points above the surface, such as an aircraft in flight or a spacecraft in orbit, and depth is used for points below the surface.