Fonction de courantLa fonction de courant en physique, en particulier en mécanique des fluides, est une fonction (à valeurs complexes) définie pour des écoulements de différents types. Elle donne le paramètre de la composante non divergente de n'importe quel champ de vitesse dont la valeur est constante le long de chaque ligne de courant. Elle peut donc être utilisée pour représenter les lignes de courant d'un fluide, correspondant aux trajectoires de particules dans un écoulement stationnaire.
Numerical linear algebraNumerical linear algebra, sometimes called applied linear algebra, is the study of how matrix operations can be used to create computer algorithms which efficiently and accurately provide approximate answers to questions in continuous mathematics. It is a subfield of numerical analysis, and a type of linear algebra. Computers use floating-point arithmetic and cannot exactly represent irrational data, so when a computer algorithm is applied to a matrix of data, it can sometimes increase the difference between a number stored in the computer and the true number that it is an approximation of.
Numerical methods for ordinary differential equationsNumerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly. For practical purposes, however – such as in engineering – a numeric approximation to the solution is often sufficient. The algorithms studied here can be used to compute such an approximation.
Analyse spatialevignette|200px|Carte de cas de choléra pendant l'épidémie de 1854 à Londres L'analyse spatiale est une approche géographique qui étudie les localisations et les interactions spatiales en tant que composantes actives des fonctionnements sociétaux. Elle part du postulat selon lequel l'espace est acteur organisé. C'est une science nomothétique donc elle vise à proposer une approche modélisée de l'espace géographique en mettant en évidence des formes récurrentes d'organisation spatiales et des théories, notamment à travers diverses notions-clés : distance, réseaux, structure, .
Lagrangien (théorie des champs)La théorie lagrangienne des champs est un formalisme de la théorie classique des champs. C'est l'analogue de la théorie des champs de la mécanique lagrangienne. La mécanique lagrangienne est utilisée pour analyser le mouvement d'un système de particules discrètes chacune ayant un nombre fini de degrés de liberté. La théorie lagrangienne des champs s'applique aux continus et aux champs, qui ont un nombre infini de degrés de liberté.
ModélisationLa modélisation est la conception et l'utilisation d'un modèle. Selon son objectif (représentation simplifiée, compréhension, prédiction) et les moyens utilisés, la modélisation est dite mathématique, géométrique, 3D, empirique, mécaniste ( modélisation de réseau trophique dans un écosystème), cinématique... Elle nécessite généralement d'être calée par des observations ou mesures faites , lesquelles servent aussi à paramétrer, calibrer ou ajuster le modèle, par exemple en intégrant des facteurs d'influences qui s'avèreraient nécessaires.
Échelle de Richtervignette|droite|Représentation d'une onde sismique. Historiquement, l'échelle de Richter a été l'une des premières tentatives d'évaluer numériquement l'intensité des tremblements de terre, grâce à la magnitude de Richter qui mesure l'énergie sismique radiée (énergie des ondes sismiques) lors du séisme. Imprécise et dépassée, elle a depuis été remplacée par des échelles plus précises permettant de mesurer la magnitude des séismes. L'éponyme de l’échelle de Richter est le sismologue américain Charles Francis Richter (-) qui l'a proposée en .
Base de données spatialesUne base de données spatiales est une base de données optimisée pour stocker et interroger des données reliées à des objets référencés géographiquement, y compris des points, les lignes et des polygones. Alors que les bases de données classiques peuvent comprendre différents types de données numériques et caractères, des fonctions additionnelles ont besoin d'être ajoutées pour traiter les types de données spatiales. Celles-ci sont typiquement appelées géométrie ou caractère.
Magnitude de momentL'échelle de magnitude de moment est une des échelles logarithmiques qui mesurent la magnitude d'un séisme, c'est-à-dire la « taille » d'un séisme proportionnelle à l'énergie sismique dégagée. Centrée sur les basses fréquences des ondes sismiques, elle quantifie précisément l'énergie émise par le séisme. Elle ne présente pas de saturation pour les plus grands événements, dont la magnitude peut être sous-évaluée par d'autres échelles, faussant ainsi les dispositifs d'alerte rapide essentiels pour la protection des populations.
EntoproctaLes Entoproctes (Entoprocta, du grec entós 'dedans' et prōktós 'derrière'), sont des animaux bilatériens suspensivores. Ils sont aussi nommés kamptozoaires (de "kampto", "courbé"). On en connait environ 150 espèces, toutes marines hormis dans le genre Urnatella qui vit en eau douce. Ces animaux sont sessiles et vivent le plus souvent en colonies. Dans une colonie, les individus, au lieu d'être fixés sur le substrat par un pied, sont fixés sur une sorte de stolon (qui peut, tout comme le pédoncule, bourgeonner et produire de nouveaux individus).