Transition vitreuseLa transition vitreuse est un ensemble de phénomènes physique associés au passage d'un état de liquide surfondu à un état solide, qualifié de vitreux. Elle caractérise le passage entre la forme dure et relativement cassante et la forme « fondue » ou caoutchouteuse d'un matériau amorphe (ou d'un matériau semi-cristallin avec des régions amorphes). Un solide amorphe qui montre une telle forme de transition vitreuse est appelé un verre. Le refroidissement intense d'un liquide visqueux vers sa forme vitreuse est appelé la vitrification.
Module d'élasticitéUn module d'élasticité (ou module élastique ou module de conservation) est une grandeur intrinsèque d'un matériau, définie par le rapport d'une contrainte à la déformation élastique provoquée par cette contrainte. Les déformations étant sans dimension, les modules d'élasticité sont homogènes à une pression et leur unité SI est donc le pascal ; en pratique on utilise plutôt un multiple, le ou le . Le comportement élastique d'un matériau homogène isotrope et linéaire est caractérisé par deux modules (ou constantes) d'élasticité indépendants.
Module de cisaillementEn résistance des matériaux, le module de cisaillement, module de glissement, module de rigidité, module de Coulomb ou second coefficient de Lamé, est une grandeur physique intrinsèque à chaque matériau et qui intervient dans la caractérisation des déformations causées par des efforts de cisaillement. La définition du module de rigidité , parfois aussi noté μ, estoù (voir l'image ci-contre) est la contrainte de cisaillement, la force, l'aire sur laquelle la force agit, le déplacement latéral relatif et l'écart à l'angle droit, le déplacement latéral et enfin l'épaisseur.
Verrethumb|Une bouteille de verre coloré. thumb|Bouteille en verre utilisée pour le vin. On appelle verre : un matériau dur, fragile (cassant) et transparent, à base de dioxyde de silicium et de fondants. Cette définition est celle du sens commun et c'était aussi celle des scientifiques jusqu'au . Avant le en effet les verres silicatés (verres sodocalciques) étaient pratiquement les seuls matériaux transparents que l'on savait produire industriellement, et encore aujourd'hui ce sont les verres produits en plus grande quantité (vitrages, vaisselle et verrerie de laboratoire, notamment).
Module de YoungLe module de Young, module d’élasticité (longitudinale) ou module de traction est la constante qui relie la contrainte de traction (ou de compression) et le début de la déformation d'un matériau élastique isotrope. Dans les ouvrages scientifiques utilisés dans les écoles d'ingénieurs, il a été longtemps appelé module d'Young. Le physicien britannique Thomas Young (1773-1829) avait remarqué que le rapport entre la contrainte de traction appliquée à un matériau et la déformation qui en résulte (un allongement relatif) est constant, tant que cette déformation reste petite et que la limite d'élasticité du matériau n'est pas atteinte.
Coefficient de PoissonMis en évidence (analytiquement) par Siméon Denis Poisson, le coefficient de Poisson (aussi appelé coefficient principal de Poisson) permet de caractériser la contraction de la matière perpendiculairement à la direction de l'effort appliqué. thumb|upright=1.4|Illustration du coefficient de Poisson. Dans le cas le plus général le coefficient de Poisson dépend de la direction de l'allongement, mais : dans le cas important des matériaux isotropes il en est indépendant ; dans le cas d'un matériau on définit trois coefficients de Poisson (dont deux liés par une relation) ; dans le cas d'un matériau orthotrope on définit deux coefficients de Poisson (liés par une relation) pour chacune des trois directions principales.
Linear elasticityLinear elasticity is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics. The fundamental "linearizing" assumptions of linear elasticity are: infinitesimal strains or "small" deformations (or strains) and linear relationships between the components of stress and strain. In addition linear elasticity is valid only for stress states that do not produce yielding.
Déformation élastiqueEn physique, l'élasticité est la propriété d'un matériau solide à retrouver sa forme d'origine après avoir été déformé. La déformation élastique est une déformation réversible. Un matériau solide se déforme lorsque des forces lui sont appliquées. Un matériau élastique retrouve sa forme et sa taille initiales quand ces forces ne s'exercent plus, jusqu'à une certaine limite de la valeur de ces forces. Les tissus biologiques sont également plus ou moins élastiques. Les raisons physiques du comportement élastique diffèrent d'un matériau à un autre.
Elasticity tensorThe elasticity tensor is a fourth-rank tensor describing the stress-strain relation in a linear elastic material. Other names are elastic modulus tensor and stiffness tensor. Common symbols include and . The defining equation can be written as where and are the components of the Cauchy stress tensor and infinitesimal strain tensor, and are the components of the elasticity tensor. Summation over repeated indices is implied. This relationship can be interpreted as a generalization of Hooke's law to a 3D continuum.
Yield (engineering)In materials science and engineering, the yield point is the point on a stress-strain curve that indicates the limit of elastic behavior and the beginning of plastic behavior. Below the yield point, a material will deform elastically and will return to its original shape when the applied stress is removed. Once the yield point is passed, some fraction of the deformation will be permanent and non-reversible and is known as plastic deformation.