Divergence de Kullback-LeiblerEn théorie des probabilités et en théorie de l'information, la divergence de Kullback-Leibler (ou divergence K-L ou encore entropie relative) est une mesure de dissimilarité entre deux distributions de probabilités. Elle doit son nom à Solomon Kullback et Richard Leibler, deux cryptanalystes américains. Selon la NSA, c'est durant les années 1950, alors qu'ils travaillaient pour cette agence, que Kullback et Leibler ont inventé cette mesure. Elle aurait d'ailleurs servi à la NSA dans son effort de cryptanalyse pour le projet Venona.
Divergence (statistiques)En statistiques, une divergence est une fonction ou une fonctionnelle qui mesure la dissimilarité d'une loi de probabilité par rapport à une autre. Selon le contexte, elles peuvent être définies pour des lois, des mesures positives (non-normalisées), des vecteurs (par exemple sur l'espace des paramètres si l'on considère un modèle paramétrique), ou encore des matrices. Les divergences sont analogues à des distances au carré et permettent de généraliser la notion de distance aux variétés statistiques, mais il s'agit d'une notion plus faible dans la mesure où elles ne sont en général pas symétriques et ne vérifient pas l'inégalité triangulaire.
F-divergenceIn probability theory, an -divergence is a function that measures the difference between two probability distributions and . Many common divergences, such as KL-divergence, Hellinger distance, and total variation distance, are special cases of -divergence. These divergences were introduced by Alfréd Rényi in the same paper where he introduced the well-known Rényi entropy. He proved that these divergences decrease in Markov processes.
Divergence de BregmanEn mathématiques, la divergence de Bregman est une mesure de la différence entre deux distributions dérivée d'une fonction potentiel U à valeurs réelles strictement convexe et continûment différentiable. Le concept a été introduit par en 1967. Par l'intermédiaire de la transformation de Legendre, au potentiel correspond un potentiel dual et leur différentiation donne naissance à deux systèmes de coordonnées duaux. Soit une fonction à valeurs réelles, strictement convexe et continûment différentiable définie sur un domaine convexe fermé .
Probabilité a posterioriDans le théorème de Bayes, la probabilité a posteriori désigne la probabilité recalculée ou remesurée qu'un évènement ait lieu en prenant en considération une nouvelle information. Autrement dit, la probabilité a posteriori est la probabilité qu'un évènement A ait lieu étant donné que l'évènement B a eu lieu. Elle s'oppose à la probabilité a priori dans l'inférence bayésienne. La loi a priori qu'un évènement ait lieu avec vraisemblance est .
Automate finithumb|upright=2|Fig. 1 : Une hiérarchie d'automates. Un automate fini ou automate avec un nombre fini d'états (en anglais finite-state automaton ou finite state machine ou FSM) est un modèle mathématique de calcul, utilisé dans de nombreuses circonstances, allant de la conception de programmes informatiques et de circuits en logique séquentielle aux applications dans des protocoles de communication, en passant par le contrôle des processus, la linguistique et même la biologie.
Probabilité a prioriDans le théorème de Bayes, la probabilité a priori (ou prior) désigne une probabilité se fondant sur des données ou connaissances antérieures à une observation. Elle s'oppose à la probabilité a posteriori (ou posterior) correspondante qui s'appuie sur les connaissances postérieures à cette observation. Le théorème de Bayes s'énonce de la manière suivante : si . désigne ici la probabilité a priori de , tandis que désigne la probabilité a posteriori, c'est-à-dire la probabilité conditionnelle de sachant .
Entropie de RényiL'entropie de Rényi, due à Alfréd Rényi, est une fonction mathématique qui correspond à la quantité d'information contenue dans la probabilité de collision d'une variable aléatoire. Étant donnés une variable aléatoire discrète à valeurs possibles , ainsi qu'un paramètre réel strictement positif et différent de 1, l' entropie de Rényi d'ordre de est définie par la formule : L'entropie de Rényi généralise d'autres acceptions de la notion d'entropie, qui correspondent chacune à des valeurs particulières de .
Bayesian probabilityBayesian probability (ˈbeɪziən or ˈbeɪʒən ) is an interpretation of the concept of probability, in which, instead of frequency or propensity of some phenomenon, probability is interpreted as reasonable expectation representing a state of knowledge or as quantification of a personal belief. The Bayesian interpretation of probability can be seen as an extension of propositional logic that enables reasoning with hypotheses; that is, with propositions whose truth or falsity is unknown.
Automate fini déterministeUn automate fini déterministe, parfois abrégé en AFD (en anglais deterministic finite automaton, abrégé en DFA) est un automate fini dont les transitions à partir de chaque état sont déterminées de façon unique par le symbole d'entrée. Un tel automate se distingue ainsi d'un automate fini non déterministe, où au contraire plusieurs possibilités de transitions peuvent exister simultanément pour un état et un symbole d'entrée donné.