Publication

Role Recognition in Multiparty Recordings using Social Affiliation Networks and Discrete Distributions

Résumé

This paper presents an approach for the recognition of roles in multiparty recordings. The approach includes two major stages: extraction of Social Affiliation Networks (speaker diarization and representation of people in terms of their social interactions), and role recognition (application of discrete probability distributions to map people into roles). The experiments are performed over several corpora, including broadcast data and meeting recordings, for a total of roughly 90 hours of material. The results are satisfactory for the broadcast data (around 80 percent of the data time correctly labeled in terms of role), while they still must be improved in the case of the meeting recordings (around 45 percent of the data time correctly labeled). In both cases, the approach outperforms significantly chance.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.