Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Automatic speech recognition (ASR) is a fascinating area of research towards realizing humanmachine interactions. After more than 30 years of exploitation of Gaussian Mixture Models (GMMs), state-of-the-art systems currently rely on Deep Neural Network (DN ...
We hypothesize that optimal deep neural networks (DNN) class-conditional posterior probabilities live in a union of low-dimensional subspaces. In real test conditions, DNN posteriors encode uncertainties which can be regarded as a superposition of unstruct ...
In the classical quickest detection problem, one must detect as quickly as possible when a Brownian motion without drift "changes" into a Brownian motion with positive drift. The change occurs at an unknown "disorder" time with exponential distribution. Th ...
Inst Mathematical Statistics2015
,
Overlapping speech has been identified as one of the main sources of errors in diarization of meeting room conversations. Therefore, overlap detection has become an important step prior to speaker diarization. Studies on conversational analysis have shown ...
2014
We propose a tractable equilibrium model for pricing defaultable bonds that are subject to contagion risk. Contagion arises because agents with 'fragile beliefs' are uncertain about both the underlying state of the economy and the posterior probabilities a ...
Columbia Business School2011
Model specification is an integral part of any statistical inference problem. Several model selection techniques have been developed in order to determine which model is the best one among a list of possible candidates. Another way to deal with this questi ...
We study the fundamental problem of learning an unknown, smooth probability function via pointwise Bernoulli tests. We provide a scalable algorithm for efficiently solving this problem with rigorous guarantees. In particular, we prove the convergence rate ...
Neural Network (NN) classifiers can assign extreme probabilities to samples that have not appeared during training (out-of-distribution samples) resulting in erroneous and unreliable predictions. One of the causes for this unwanted behaviour lies in the us ...
In i-vector based speaker recognition systems, back-end classifiers are trained to factor out nuisance information and retain only the speaker identity. As a result, variabilities arising due to gender, language and accent ( among many others) are suppress ...
Accurate measurement-data interpretation leads to increased understanding of structural behavior and enhanced asset-management decision making. In this paper, four data-interpretation methodologies, residual minimization, traditional Bayesian model updatin ...