Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
One of the most classical results in high-dimensional learning theory provides a closed-form expression for the generalisation error of binary classification with a single-layer teacher-student perceptron on i.i.d. Gaussian inputs. Both Bayes-optimal (BO) estimation and empirical risk minimisation (ERM) were extensively analysed in this setting. At the same time, a considerable part of modern machine learning practice concerns multi-class classification. Yet, an analogous analysis for the multi-class teacher-student perceptron was missing. In this manuscript we fill this gap by deriving and evaluating asymptotic expressions for the BO and ERM generalisation errors in the high-dimensional regime. For Gaussian teacher, we investigate the performance of ERM with both cross-entropy and square losses, and explore the role of ridge regularisation in approaching Bayes-optimality. In particular, we observe that regularised cross-entropy minimisation yields close-to-optimal accuracy. Instead, for Rademacher teacher we show that a first-order phase transition arises in the BO performance.
Florent Gérard Krzakala, Lenka Zdeborová, Hugo Chao Cui
Christian Leinenbach, Sergey Shevchik, Rafal Wróbel, Marc Leparoux