Processus autorégressifUn processus autorégressif est un modèle de régression pour séries temporelles dans lequel la série est expliquée par ses valeurs passées plutôt que par d'autres variables. Un processus autorégressif d'ordre p, noté AR(p) est donné par : où sont les paramètres du modèle, est une constante et un bruit blanc. En utilisant l'opérateur des retards, on peut l'écrire : Un processus autorégressif d'ordre 1 s'écrit : On peut formuler le processus AR(1) de manière récursive par rapport aux conditions précédentes : En remontant aux valeurs initiales, on aboutit à : Il est à noter que les sommes vont ici jusqu'à l'infini.
ARMAEn statistique, les modèles ARMA (modèles autorégressifs et moyenne mobile), ou aussi modèle de Box-Jenkins, sont les principaux modèles de séries temporelles. Étant donné une série temporelle , le modèle ARMA est un outil pour comprendre et prédire, éventuellement, les valeurs futures de cette série. Le modèle est composé de deux parties : une part autorégressive (AR) et une part moyenne-mobile (MA). Le modèle est généralement noté ARMA(,), où est l'ordre de la partie AR et l'ordre de la partie MA.
Autoregressive integrated moving averageIn statistics and econometrics, and in particular in time series analysis, an autoregressive integrated moving average (ARIMA) model is a generalization of an autoregressive moving average (ARMA) model. To better comprehend the data or to forecast upcoming series points, both of these models are fitted to time series data. ARIMA models are applied in some cases where data show evidence of non-stationarity in the sense of mean (but not variance/autocovariance), where an initial differencing step (corresponding to the "integrated" part of the model) can be applied one or more times to eliminate the non-stationarity of the mean function (i.
Moving-average modelIn time series analysis, the moving-average model (MA model), also known as moving-average process, is a common approach for modeling univariate time series. The moving-average model specifies that the output variable is cross-correlated with a non-identical to itself random-variable. Together with the autoregressive (AR) model, the moving-average model is a special case and key component of the more general ARMA and ARIMA models of time series, which have a more complicated stochastic structure.
Vecteur Autoregressif (VAR)Le modèle à Vecteur Autoregressif (VAR) est un modèle économique qui permet de capturer les interdépendances entre plusieurs séries temporelles. Il s'agit de la principale catégorie de modèle statistique. Dans un modèle VAR, les variables sont traitées symétriquement de manière que chacune d'entre elles soit expliquée par ses propres valeurs passées et par les valeurs passées des autres variables. De ce fait, les modèles VAR mobilisent des bases de données importantes.
Compression de donnéesLa compression de données ou codage de source est l'opération informatique consistant à transformer une suite de bits A en une suite de bits B plus courte pouvant restituer les mêmes informations, ou des informations voisines, en utilisant un algorithme de décompression. C'est une opération de codage qui raccourcit la taille (de transmission, de stockage) des données au prix d'un travail de compression. Celle-ci est l'opération inverse de la décompression.
Algorithme de compression sans pertevignette|Comparaison de la compression d'image entre les formats JPG (à gauche) et PNG (à droite). PNG utilise une compression sans perte. On appelle algorithme de compression sans perte toute procédure de codage ayant pour objectif de représenter une certaine quantité d'information en utilisant ou en occupant un espace plus petit, permettant ainsi une reconstruction exacte des données d'origine. C'est-à-dire que la compression sans perte englobe les techniques permettant de générer un duplicata exact du flux de données d'entrée après un cycle de compression/expansion.
Histoire évolutive de la lignée humainevignette|redresse=1.7|L'évolution buissonnante des Homininés depuis 10 Ma L'histoire évolutive de la lignée humaine (Hominina) est le processus évolutif conduisant à l'apparition du genre Homo, puis à celle dHomo sapiens (l'Homme actuel). L'histoire évolutive des primates conduit à l'apparition de la famille des hominidés (grands singes), qui aurait divergé de celle des hylobatidés (gibbons) il y a quelque 20 millions d'années (Ma).
Compression artifactA compression artifact (or artefact) is a noticeable distortion of media (including , audio, and video) caused by the application of lossy compression. Lossy data compression involves discarding some of the media's data so that it becomes small enough to be stored within the desired or transmitted (streamed) within the available bandwidth (known as the data rate or bit rate). If the compressor cannot store enough data in the compressed version, the result is a loss of quality, or introduction of artifacts.
Évolution de l'intelligence humaineL'évolution de l'intelligence humaine est étroitement liée à l'évolution du cerveau humain et à l'origine du langage. L'origine évolutive de l'Homme s'étend sur environ sept millions d'années, depuis la séparation du genre Pan jusqu'à l'émergence de la modernité comportementale il y a . Les trois premiers millions d'années de cette chronologie concernent Sahelanthropus tchadensis, les deux millions suivants concernent les australopithèques et les deux derniers millions couvrent l'histoire du genre Homo à l'ère paléolithique.