Publication

Semantic Segmentation of Radio Programs Using Social Network Analysis and Duration Distribution Modeling

Sarah Favre, Alessandro Vinciarelli
2007
Article de conférence
Résumé

This work presents and compare two approaches for the semantic segmentation of broadcast news: the first is based on Social Network Analysis, the second is based on Poisson Stochastic Processes. The experiments are performed over 27 hours of material: preliminary results are obtained by addressing the problem of splitting different episodes of the same program into two parts corresponding to a news bulletin and a talk-show respectively. The results show that the transition point between the two parts can be detected with an average error of around three minutes, i.e. roughly 5 percent of each episode duration.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.