Réseau socialEn sciences humaines et sociales, l'expression réseau social désigne un agencement de liens entre des individus ou des organisations, constituant un groupement qui a un sens : la famille, les collègues, un groupe d'amis, une communauté, etc. L'anthropologue australien John Arundel Barnes a introduit l'expression en 1954. L'analyse des réseaux sociaux est devenue une spécialité universitaire dans le champ de la sociologie, se fondant sur la théorie des réseaux et l'usage des graphes.
Analyse des réseaux sociauxL'analyse des réseaux sociaux est une approche issue de la sociologie, qui a recours à la théorie des réseaux afin d'étudier les interactions sociales, en termes de réseau. La théorie des réseaux sociaux conçoit les interactions sociales en termes de nœuds et liens. Les nœuds sont habituellement les acteurs sociaux dans le réseau, mais ils peuvent aussi représenter des institutions, et les liens sont les interactions ou les relations entre ces nœuds.
Dirichlet-multinomial distributionIn probability theory and statistics, the Dirichlet-multinomial distribution is a family of discrete multivariate probability distributions on a finite support of non-negative integers. It is also called the Dirichlet compound multinomial distribution (DCM) or multivariate Pólya distribution (after George Pólya). It is a compound probability distribution, where a probability vector p is drawn from a Dirichlet distribution with parameter vector , and an observation drawn from a multinomial distribution with probability vector p and number of trials n.
Social network analysis softwareSocial network analysis (SNA) software is software which facilitates quantitative or qualitative analysis of social networks, by describing features of a network either through numerical or visual representation. Networks can consist of anything from families, project teams, classrooms, sports teams, legislatures, nation-states, disease vectors, membership on networking websites like Twitter or Facebook, or even the Internet. Networks can consist of direct linkages between nodes or indirect linkages based upon shared attributes, shared attendance at events, or common affiliations.
Loi multinomialeEn théorie des probabilités, la loi multinomiale (aussi appelée distribution polynomiale) généralise la loi binomiale. Tandis que la loi binomiale concerne le nombre de succès lors d'une série de n épreuves de Bernoulli indépendantes, comme dans le jeu de pile ou face, la loi multinomiale ne se restreint pas aux épreuves comportant deux issues. La loi multinomiale s'applique par exemple au cas de n jets d'un dé à six faces : l'apparition du seul peut être modélisé par une loi binomiale alors que l'ensemble des apparitions des à 6 est modélisé par une loi multinomiale.
Dirichlet negative multinomial distributionIn probability theory and statistics, the Dirichlet negative multinomial distribution is a multivariate distribution on the non-negative integers. It is a multivariate extension of the beta negative binomial distribution. It is also a generalization of the negative multinomial distribution (NM(k, p)) allowing for heterogeneity or overdispersion to the probability vector. It is used in quantitative marketing research to flexibly model the number of household transactions across multiple brands.
Categorical distributionIn probability theory and statistics, a categorical distribution (also called a generalized Bernoulli distribution, multinoulli distribution) is a discrete probability distribution that describes the possible results of a random variable that can take on one of K possible categories, with the probability of each category separately specified. There is no innate underlying ordering of these outcomes, but numerical labels are often attached for convenience in describing the distribution, (e.g. 1 to K).
Loi de Dirichletthumb|right|250px|Plusieurs images de la densité de la loi de Dirichlet lorsque K=3 pour différents vecteurs de paramètres α. Dans le sens horaire à partir du coin supérieur gauche : α=(6, 2, 2), (3, 7, 5), (6, 2, 6), (2, 3, 4). En probabilité et statistiques, la loi de Dirichlet, souvent notée Dir(α), est une famille de lois de probabilité continues pour des variables aléatoires multinomiales. Cette loi (ou encore distribution) est paramétrée par le vecteur α de nombres réels positifs et tire son nom de Johann Peter Gustav Lejeune Dirichlet.
Loi bêta-binomialeEn théorie des probabilités, la loi bêta-binomiale est une loi de probabilité discrète à support fini, correspondant à un processus de tirages Bernoulli dont la probabilité de succès est aléatoire (suivant une loi bêta). Elle est fréquemment utilisée en inférence bayésienne. La loi de Bernoulli en est un cas particulier pour le paramètre n = 1. Pour α = β = 1, elle correspond à la loi uniforme discrète sur {0,..,n} . Elle approche également la loi binomiale lorsque les paramètres α et β sont arbitrairement grands.
Posterior predictive distributionIn Bayesian statistics, the posterior predictive distribution is the distribution of possible unobserved values conditional on the observed values. Given a set of N i.i.d. observations , a new value will be drawn from a distribution that depends on a parameter , where is the parameter space. It may seem tempting to plug in a single best estimate for , but this ignores uncertainty about , and because a source of uncertainty is ignored, the predictive distribution will be too narrow.