En théorie des probabilités, la loi bêta-binomiale est une loi de probabilité discrète à support fini, correspondant à un processus de tirages Bernoulli dont la probabilité de succès est aléatoire (suivant une loi bêta). Elle est fréquemment utilisée en inférence bayésienne.
La loi de Bernoulli en est un cas particulier pour le paramètre n = 1. Pour α = β = 1, elle correspond à la loi uniforme discrète sur {0,..,n} . Elle approche également la loi binomiale lorsque les paramètres α et β sont arbitrairement grands. La loi bêta-binomiale est une version unidimensionnelle de la loi de Pólya multivariée, similairement aux lois binomiale et bêta qui sont respectivement des cas spéciaux des lois multinomiale et de Dirichlet.
La loi bêta est la loi conjuguée de la loi binomiale. Ceci résulte d'un changement analytique d'une loi composée où le paramètre p de la loi binomiale est aléatoire et donné par une loi bêta. Plus précisément, si
est la loi binomiale où est une variable aléatoire de loi bêta
alors la loi composée est donnée par
En utilisant les propriétés de la fonction bêta, ceci peut être écrit de la manière suivante :
Dans ce contexte, la loi bêta-binomiale apparaît souvent en inférence bayésienne : la loi bêta binomiale est la loi prédictive d'une variable aléatoire binomiale avec une probabilité de succès donnée par une loi bêta.
La loi bêta-binomiale peut également être représentée par un modèle d'urnes, pour des paramètres α et β entiers positifs. Plus précisément, on considère une urne contenant α boules rouges et β boules noires, on effectue alors des tirages aléatoires. Si une boule rouge est tirée, alors deux boules rouges sont replacées dans l'urne (elle-même plus une autre). De la même manière, si une boule noire est tirée, elle est remise avec une autre boule noire dans l'urne. Si on répète cette opération n fois, alors la probabilité de tirer k boules rouges suit une loi bêta-binomiale de paramètres n, α et β.
Il est à noter que si après les tirages on replace une unique boule, alors la loi est binomiale, et si les tirages sont effectués sans remise, alors la loi est hypergéométrique.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
La loi hypergéométrique de paramètres associés , et est une loi de probabilité discrète, décrivant le modèle suivant : On tire simultanément (ou successivement sans remise (mais cela induit un ordre)) boules dans une urne contenant boules gagnantes et boules perdantes (avec , soit un nombre total de boules valant = ). On compte alors le nombre de boules gagnantes extraites et on appelle la variable aléatoire donnant ce nombre. L'univers est l'ensemble des entiers de 0 à .
En théorie des probabilités, un problème d'urne est une représentation d'expériences aléatoires par un tirage aléatoire uniforme de boules dans une urne. L'urne est supposée contenir un certain nombre de boules qui sont indiscernables au toucher, c'est-à-dire que lorsque l'on tire une boule à l'intérieur, le tirage est aléatoire et chaque boule à l'intérieur de l'urne a la même chance d'être tirée. Il est possible de considérer plusieurs types de tirages : des tirages successifs avec ou sans remise, des tirages simultanés, des tirages successifs dans plusieurs urnes suivant des règles prédéfinies.
In probability theory and statistics, the Dirichlet-multinomial distribution is a family of discrete multivariate probability distributions on a finite support of non-negative integers. It is also called the Dirichlet compound multinomial distribution (DCM) or multivariate Pólya distribution (after George Pólya). It is a compound probability distribution, where a probability vector p is drawn from a Dirichlet distribution with parameter vector , and an observation drawn from a multinomial distribution with probability vector p and number of trials n.
The objective of this course is to provide a detailed coverage of the standard models for the valuation and hedging of derivatives products such as European options, American options, forward contract
This course presents an introduction to statistical mechanics geared towards materials scientists. The concepts of macroscopic thermodynamics will be related to a microscopic picture and a statistical
Explore les chaînes de bits de comptage, les comités, la distribution des boules, les mains de poker et les coefficients, avec des exemples du principe de Pigeonhole et de la sélection des cartes.
Explore l'inférence bayésienne pour les variables aléatoires gaussiennes, couvrant la distribution articulaire, les pdf marginaux et le classificateur Bayes.
Spatial count data models are used to explain and predict the frequency of phenomena such as traffic accidents in geographically distinct entities such as census tracts or road segments. These models are typically estimated using Bayesian Markov chain Mont ...
In this thesis, we investigate the inverse problem of trees and barcodes from a combinatorial, geometric, probabilistic and statistical point of view.Computing the persistent homology of a merge tree yields a barcode B. Reconstructing a tree from B involve ...
The effects of operational and geometrical uncertainties on Tip Leakage Vortex (TLV) characteristics are investigated in the current research. Geometrical uncertainties are comprised of manufacturing tolerances or gradual geometry degradation over the time ...