Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Information access in meeting recordings can be assisted by meeting browsers, or can be fully automated following a question-answering (QA) approach. An information access task is defined, aiming at discriminating true vs. false parallel statements about facts in meetings. An automatic QA algorithm is applied to this task, using passage retrieval over a meeting transcript. The algorithm scores 59% accuracy for passage retrieval, while random guessing is below 1%, but only scores 60% on combined retrieval and question discrimination, for which humans reach 70%-80% and the baseline is 50%. The algorithm clearly outperforms humans for speed, at less than 1 second per question, vs. 1.5-2 minutes per question for humans. The degradation on ASR compared to manual transcripts still yields lower but acceptable scores, especially for passage identification. Automatic QA thus appears to be a promising enhancement to meeting browsers used by humans, as an assistant for relevant passage identification.
Jamie Paik, Mustafa Mete, Hwayeong Jeong
Michael Herzog, Jean-Pascal Théodor Pfister, Maya Anna Jastrzebowska, Mattew Pachai