Induced subgraphIn the mathematical field of graph theory, an induced subgraph of a graph is another graph, formed from a subset of the vertices of the graph and all of the edges (from the original graph) connecting pairs of vertices in that subset. Formally, let be any graph, and let be any subset of vertices of G. Then the induced subgraph is the graph whose vertex set is and whose edge set consists of all of the edges in that have both endpoints in . That is, for any two vertices , and are adjacent in if and only if they are adjacent in .
Graphe régulierEn théorie des graphes, un graphe régulier est un graphe où tous les sommets ont le même nombre de voisins, c'est-à-dire le même degré ou valence. Un graphe régulier dont les sommets sont de degré est appelé un graphe -régulier ou graphe régulier de degré . Un graphe 0-régulier est un ensemble de sommets déconnectés; un graphe 1-régulier a un nombre pair de sommets et est un ensemble d'arêtes déconnectées ou couplage; enfin, un graphe 2-régulier est un ensemble de cycles déconnectés.
Problème de l'isomorphisme de sous-graphesvignette|Le problème est de savoir si un graphe contient un autre graphe comme sous-graphe. En informatique théorique, le problème de l'isomorphisme de sous-graphes est le problème de décision suivant : étant donnés deux graphes G et H, déterminer si G contient un sous-graphe isomorphe à H. C'est une généralisation du problème de l'isomorphisme de graphes. Soient et deux graphes. Le problème de décision de l'isomorphisme de sous-graphe est : « Est-ce qu'il existe un sous-graphe , avec et , tel qu'il existe une bijection telle que ? ».
Induced pathIn the mathematical area of graph theory, an induced path in an undirected graph G is a path that is an induced subgraph of G. That is, it is a sequence of vertices in G such that each two adjacent vertices in the sequence are connected by an edge in G, and each two nonadjacent vertices in the sequence are not connected by any edge in G. An induced path is sometimes called a snake, and the problem of finding long induced paths in hypercube graphs is known as the snake-in-the-box problem.
Graphe polyédriqueEn théorie des graphes, une branche des mathématiques, un graphe polyédrique est un graphe non orienté défini en termes géométriques : il représente les sommets et les arêtes d'un polyèdre convexe. On peut aussi définir un graphe polyédrique en termes purement issus de la théorie des graphes : c'est un graphe planaire 3 sommet-connexe. Le diagramme de Schlegel d'un polyèdre convexe représente ses sommets et ses arêtes par des points et des segments de droite dans le plan euclidien.
Graphe orienté acycliqueEn théorie des graphes, un graphe orienté acyclique (en anglais directed acyclic graph ou DAG), est un graphe orienté qui ne possède pas de circuit. Un tel graphe peut être vu comme une hiérarchie. Un graphe orienté acyclique est un graphe orienté qui ne possède pas de circuit. On peut toujours trouver un sous-graphe couvrant d’un graphe orienté acyclique qui soit un arbre (resp. une forêt). Dans un graphe orienté acyclique, la relation d'accessibilité R(u, v) définie par « il existe un chemin de u à v » est une relation d'ordre partielle.
Forbidden graph characterizationIn graph theory, a branch of mathematics, many important families of graphs can be described by a finite set of individual graphs that do not belong to the family and further exclude all graphs from the family which contain any of these forbidden graphs as (induced) subgraph or minor. A prototypical example of this phenomenon is Kuratowski's theorem, which states that a graph is planar (can be drawn without crossings in the plane) if and only if it does not contain either of two forbidden graphs, the complete graph K_5 and the complete bipartite graph K_3,3.
Hamiltonian pathIn the mathematical field of graph theory, a Hamiltonian path (or traceable path) is a path in an undirected or directed graph that visits each vertex exactly once. A Hamiltonian cycle (or Hamiltonian circuit) is a cycle that visits each vertex exactly once. A Hamiltonian path that starts and ends at adjacent vertices can be completed by adding one more edge to form a Hamiltonian cycle, and removing any edge from a Hamiltonian cycle produces a Hamiltonian path.
Graphe fortement régulierEn théorie des graphes, qui est un domaine des mathématiques, un graphe fortement régulier est un type de graphe régulier. Soit G = (V,E) un graphe régulier ayant v sommets et degré k. On dit que G est fortement régulier s'il existe deux entiers λ et μ tels que Toute paire de sommets adjacents a exactement λ voisins communs. Toute paire de sommets non-adjacents a exactement μ voisins communs. Un graphe avec ces propriétés est appelé un graphe fortement régulier de type (v,k,λ,μ).
Graphe hypohamiltonienEn théorie des graphes, un graphe est hypohamiltonien s'il n'a pas de cycle hamiltonien mais que la suppression de n'importe quel sommet du graphe suffit à le rendre hamiltonien. Les graphes hypohamiltoniens furent étudiés pour la première fois par Sousselier en 1963 dans Problèmes plaisants et délectables. Sous forme d'une petite énigme la notion est introduite. L'énoncé demande de trouver un tel graphe d'ordre 10 (le graphe de Petersen) et de prouver que cet ordre est minimal, c'est-à-dire qu'il n'existe pas de graphe hypohamiltonien à moins de 10 sommets.