Interaction spin-orbitevignette|Structures fines et hyperfines dans l'hydrogène. Le couplage des différents moments cinétiques conduit à la division du niveau d'énergie. Non dessiné à l'échelle. Le moment cinétique de spin électronique, S est couplé au moment cinétique orbital électronique, L, pour former le moment angulaire électronique total , J. Celui-ci est ensuite couplé au moment cinétique de spin nucléaire, I, pour former le moment cinétique total, F. Le terme symbole prend la forme 2S+1L avec les valeurs de L représentées par des lettres (S,P,D ,F ,G,H,.
Gaz de FermiUn gaz de Fermi idéal est un état de la matière constitué d'un ensemble de nombreux fermions sans interaction. Les fermions sont des particules ayant un spin demi-entier (1/2, 3/2), comme les électrons, les protons et les neutrons ; la propriété essentielle des fermions est de ne pas pouvoir occuper en même temps le même état quantique, en raison du principe d'exclusion de Pauli.
Énergie de FermiL'énergie de Fermi, EF, en mécanique quantique, est l'énergie du plus haut état quantique occupé dans un système par des fermions à . Parfois, le terme est confondu avec le niveau de Fermi, qui décrit un sujet proche quoique différent, le niveau de Fermi représentant le potentiel chimique des fermions. Ces deux quantités sont les mêmes à , mais diffèrent pour toute autre température.
Niveau de FermiLe niveau de Fermi est une caractéristique propre à un système qui traduit la répartition des électrons dans ce système en fonction de la température. La notion de niveau de Fermi est utilisée en physique et en électronique, notamment dans le cadre du développement des composants semi-conducteurs. Concrètement, le niveau de Fermi est une fonction de la température mais il peut être considéré, en première approximation, comme une constante, laquelle équivaudrait alors au niveau de plus haute énergie occupé par les électrons du système à la température de .
Liquide de FermiUn liquide de Fermi est un état quantique de la matière, observé à basse température pour la plupart des solides cristallins bi- et tridimensionnels et dans l'Hélium 3 liquide. Il se caractérise macroscopiquement par des propriétés thermodynamiques, magnétiques, et de transport (ex : conductivité électrique) universelles et correspondant à celles d'un gaz de quasi-particules ayant le même spin-1/2, la même charge, et le même volume sous la surface de Fermi que les électrons (ou les atomes d'Hélium 3), mais une masse renormalisée portant le nom de « masse effective », ainsi que des interactions résiduelles.
Angular momentum couplingIn quantum mechanics, the procedure of constructing eigenstates of total angular momentum out of eigenstates of separate angular momenta is called angular momentum coupling. For instance, the orbit and spin of a single particle can interact through spin–orbit interaction, in which case the complete physical picture must include spin–orbit coupling. Or two charged particles, each with a well-defined angular momentum, may interact by Coulomb forces, in which case coupling of the two one-particle angular momenta to a total angular momentum is a useful step in the solution of the two-particle Schrödinger equation.
Two-dimensional electron gasA two-dimensional electron gas (2DEG) is a scientific model in solid-state physics. It is an electron gas that is free to move in two dimensions, but tightly confined in the third. This tight confinement leads to quantized energy levels for motion in the third direction, which can then be ignored for most problems. Thus the electrons appear to be a 2D sheet embedded in a 3D world. The analogous construct of holes is called a two-dimensional hole gas (2DHG), and such systems have many useful and interesting properties.
Rashba effectThe Rashba effect, also called Bychkov–Rashba effect, is a momentum-dependent splitting of spin bands in bulk crystals and low-dimensional condensed matter systems (such as heterostructures and surface states) similar to the splitting of particles and anti-particles in the Dirac Hamiltonian. The splitting is a combined effect of spin–orbit interaction and asymmetry of the crystal potential, in particular in the direction perpendicular to the two-dimensional plane (as applied to surfaces and heterostructures).
Dresselhaus effectThe Dresselhaus effect is a phenomenon in solid-state physics in which spin–orbit interaction causes energy bands to split. It is usually present in crystal systems lacking inversion symmetry. The effect is named after Gene Dresselhaus, who discovered this splitting in 1955. Spin–orbit interaction is a relativistic coupling between the electric field produced by an ion-core and the resulting dipole moment arising from the relative motion of the electron, and its intrinsic magnetic dipole proportional to the electron spin.
Superconducting magnetA superconducting magnet is an electromagnet made from coils of superconducting wire. They must be cooled to cryogenic temperatures during operation. In its superconducting state the wire has no electrical resistance and therefore can conduct much larger electric currents than ordinary wire, creating intense magnetic fields. Superconducting magnets can produce stronger magnetic fields than all but the strongest non-superconducting electromagnets, and large superconducting magnets can be cheaper to operate because no energy is dissipated as heat in the windings.