Centralitéthumb|right|300px|Exemples de A) Centralité d'intermédiarité, B) Centralité de proximité, C) Centralité de vecteur propre, D) Centralité de degré, E) Centralité harmonique et F) Centralité de Katz sur le même graphe. En théorie des graphes et en théorie des réseaux, les indicateurs de centralité sont des mesures censées capturer la notion d'importance dans un graphe, en identifiant les sommets les plus significatifs.
Espace localement connexeEn mathématiques, plus précisément en topologie, un espace localement connexe est un espace topologique pouvant être décrit à l’aide de ses ouverts connexes. En topologie, on dit qu’un espace est connexe lorsqu’il est fait « d’une seule pièce ». La question naturelle qui suit est de savoir si tout espace topologique peut être décrit comme la réunion disjointe (dans la catégorie des espaces topologiques) de ses composantes connexes ; en d’autres termes, peut-on considérer que lorsqu’on connait toutes les « pièces » d’un espace topologique, on sait tout de cet espace ? Une condition nécessaire et suffisante pour cela est que toutes les composantes connexes soient ouvertes.
Giant componentIn network theory, a giant component is a connected component of a given random graph that contains a significant fraction of the entire graph's vertices. More precisely, in graphs drawn randomly from a probability distribution over arbitrarily large graphs, a giant component is a connected component whose fraction of the overall number of vertices is bounded away from zero. In sufficiently dense graphs distributed according to the Erdős–Rényi model, a giant component exists with high probability.
Chemin (topologie)En mathématiques, notamment en analyse complexe et en topologie, un chemin est la modélisation d'une succession continue de points entre un point initial et un point final. On parle aussi de chemin orienté. Soit X un espace topologique. On appelle chemin ou arc sur X toute application continue . Le point initial du chemin est f(0) et le point final est f(1). Ces deux points constituent les extrémités du chemin. Lorsque A désigne le point initial et B le point final du chemin (cf.