A new method for solving broadband matching problems
Publications associées (32)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In the rapidly evolving landscape of machine learning research, neural networks stand out with their ever-expanding number of parameters and reliance on increasingly large datasets. The financial cost and computational resources required for the training p ...
EPFL2024
,
We consider increasingly complex models of matrix denoising and dictionary learning in the Bayes-optimal setting, in the challenging regime where the matrices to infer have a rank growing linearly with the system size. This is in contrast with most existin ...
AMER PHYSICAL SOC2022
,
This work presents a new computational optimization framework for the robust control of parks of Wave Energy Converters (WEC) in irregular waves. The power of WEC parks is maximized with respect to the individual control damping and stiffness coefficients ...
MOX Modeling and Scientific Computing2023
This paper examines the minimization of the cost for an expected random production output, given an assembly of finished goods from two random inputs, matched in two categories. We describe the optimal input portfolio, first using the standard normal appro ...
2022
A key challenge across many disciplines is to extract meaningful information from data which is often obscured by noise. These datasets are typically represented as large matrices. Given the current trend of ever-increasing data volumes, with datasets grow ...
EPFL2024
, ,
The training of neural networks by gradient descent methods is a cornerstone of the deep learning revolution. Yet, despite some recent progress, a complete theory explaining its success is still missing. This article presents, for orthogonal input vectors, ...
2022
This paper considers the multi-agent linear least-squares problem in a server-agent network architecture. The system comprises multiple agents, each with a set of local data points. The agents are connected to a server, and there is no inter-agent communic ...
Many classical Computer Vision problems, such as essential matrix computation and pose estimation from 3D to 2D correspondences, can be tackled by solving a linear least-square problem, which can be done by finding the eigenvector corresponding to the smal ...
Motivated by the recent successes of neural networks that have the ability to fit the data perfectly \emph{and} generalize well, we study the noiseless model in the fundamental least-squares setup. We assume that an optimum predictor fits perfectly inputs ...
Network information theory studies the communication of information in a network and considers its fundamental limits. Motivating from the extensive presence of the networks in the daily life, the thesis studies the fundamental limits of particular network ...