Ajustement de courbethumb|upright=2.2|Ajustement par itérations d'une courbe bruitée par un modèle de pic asymétrique (méthode de Gauss-Newton avec facteur d'amortissement variable). L'ajustement de courbe est une technique d'analyse d'une courbe expérimentale, consistant à construire une courbe à partir de fonctions mathématiques et d'ajuster les paramètres de ces fonctions pour se rapprocher de la courbe mesurée . On utilise souvent le terme anglais curve fitting, profile fitting ou simplement fitting, pour désigner cette méthode ; on utilise souvent le franglais « fitter une courbe » pour dire « ajuster une courbe ».
Filtre (optique)vignette|Filtre optique pour la photographie. En optique, un filtre est un dispositif qui laisse passer une partie du rayonnement lumineux, sans autrement affecter son cheminement. Les filtres sont utilisés en photographie, dans de nombreux instruments d'optique comme ceux utilisés en astronomie, ainsi que pour l'éclairage de scène de spectacle. On distingue trois procédés de filtrage : le filtrage par absorption transmet ou absorbe le rayonnement selon sa longueur d'onde dans le vide.
ContrebasseLa contrebasse est un instrument grave de la famille des instruments à cordes. Avant l'octobasse, la contrebasse est le plus grand (entre et ) et l'un des plus graves instruments de cette famille. À la différence des autres instruments de la famille (violon, alto, violoncelle), qui s'accordent en quintes, elle s'accorde aujourd’hui en quartes (du grave vers l'aigu : mi -1, la-1, ré1 et sol1 en notation française ou E1, A1, D2, G2 en notation anglo-saxonne), essentiellement pour des raisons de facilité de doigté.
Algebraic surfaceIn mathematics, an algebraic surface is an algebraic variety of dimension two. In the case of geometry over the field of complex numbers, an algebraic surface has complex dimension two (as a complex manifold, when it is non-singular) and so of dimension four as a smooth manifold. The theory of algebraic surfaces is much more complicated than that of algebraic curves (including the compact Riemann surfaces, which are genuine surfaces of (real) dimension two).
Analyse multivectorielleL’analyse géométrique, calcul géométrique, analyse multivectorielle, ou encore calcul multivectoriel, est une branche des mathématiques qui est aux structures d'algèbres géométriques ce que l'analyse vectorielle est aux espaces vectoriels. En substance, l'analyse géométrique considère des fonctions définies sur un espace vectoriel et à valeurs dans l'algèbre géométrique sous-tendue par cet espace, et s'intéresse aux limites exhibées par ces fonctions dans le cadre du calcul infinitésimal.