thumb|upright=2.2|Ajustement par itérations d'une courbe bruitée par un modèle de pic asymétrique (méthode de Gauss-Newton avec facteur d'amortissement variable). L'ajustement de courbe est une technique d'analyse d'une courbe expérimentale, consistant à construire une courbe à partir de fonctions mathématiques et d'ajuster les paramètres de ces fonctions pour se rapprocher de la courbe mesurée . On utilise souvent le terme anglais curve fitting, profile fitting ou simplement fitting, pour désigner cette méthode ; on utilise souvent le franglais « fitter une courbe » pour dire « ajuster une courbe ». On utilise des méthodes de régression. Dans les cas simples, il s'agit de régression multilinéaire si la loi est linéaire pour tous les paramètres, ou de régression polynomiale lorsque l'on utilise un polynôme pour simuler le phénomène (les paramètres physiques pouvant être déduits des coefficients du polynôme). Les méthodes de régression classiques permettent de déterminer les paramètres à partir de calculs sur les données, mais sont inapplicables si la fonction est trop complexe. Il faut alors travailler par essai-erreur pour se rapprocher d'une solution, au sens de la méthode des moindres carrés. La solution n'est pas nécessairement unique. On distingue deux types d'ajustement : les ajustements algébriques consistent à minimiser l'écart vertical (en y) entre la courbe modèle et les points expérimentaux ; les ajustements géométriques consistent à minimiser la distance perpendiculairement à la courbe modèle ; c'est le cas par exemple de la régression circulaire ou elliptique, qui consiste à trouver le cercle, resp. l'ellipse, la plus proche des points Dans le cas d'un ajustement géométrique, on parle de la méthode des moindres carrés totaux (total least square, TLS) : en effet, on prend en compte les deux coordonnées x et y pour la détermination de l'écart quadratique. thumb|Régression sur un nuage de points par un polynôme de degré croissant.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (21)
MATH-189: Mathematics
Ce cours a pour but de donner les fondements de mathématiques nécessaires à l'architecte contemporain évoluant dans une école polytechnique.
BIO-645: Introduction to Applied Data Science (I2ADS)
The "Introduction to Applied Data Science" (I2ADS) course is aimed at students of all levels to train them in the core computer science software stack and techniques forming the pillars of open & repr
DH-406: Machine learning for DH
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
Afficher plus
Publications associées (100)
Concepts associés (21)
Function approximation
In general, a function approximation problem asks us to select a function among a that closely matches ("approximates") a in a task-specific way. The need for function approximations arises in many branches of applied mathematics, and computer science in particular , such as predicting the growth of microbes in microbiology. Function approximations are used where theoretical models are unavailable or hard to compute.
Spline
vignette|Exemple de spline quadratique. En mathématiques appliquées et en analyse numérique, une spline est une fonction définie par morceaux par des polynômes. Spline est un terme anglais qui, lorsqu'il est utilisé en français, est généralement prononcé , à la française. Il désigne une réglette de bois souple appelée cerce en français. Toutefois, dans l'usage des mathématiques appliquées, le terme anglais spline est généralisé et le mot français cerce ignoré.
Extrapolation (mathématiques)
En mathématiques, l'extrapolation est le calcul d'un point d'une courbe dont on ne dispose pas d'équation, à partir d'autres points, lorsque l'abscisse du point à calculer est au-dessus du maximum ou en dessous du minimum des points connus. En dehors de cette particularité, les méthodes sont les mêmes que pour l'interpolation. C'est, d'autre part, une méthode développée par Norbert Wiener en traitement du signal pour la prédiction. Le choix de la méthode d'extrapolation dépend de la connaissance a priori de la méthode de génération des données.
Afficher plus
MOOCs associés (5)
Introduction to optimization on smooth manifolds: first order methods
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Neuronal Dynamics 2- Computational Neuroscience: Neuronal Dynamics of Cognition
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.