Entier friableEn théorie des nombres, un nombre friable, ou lisse, est un entier naturel dont l'ensemble des facteurs premiers sont petits, relativement à une borne donnée. Les entiers friables sont particulièrement importants dans la cryptographie basée sur la factorisation, qui constitue depuis une vingtaine d'années une branche dynamique de la théorie des nombres, avec des applications dans des domaines aussi variés que l'algorithmique (problème du logarithme discret), la théorie de la sommabilité (sommation friable des séries de Fourier), la théorie élémentaire des nombres premiers (preuve élémentaire du théorème des nombres premiers de Daboussi en 1984), la méthode du cercle (problème de Waring), le modèle de Billingsley, le modèle de , l', les théorèmes de type Erdős-Wintner, etc.
Hierarchical organizationA hierarchical organization or hierarchical organisation (see spelling differences) is an organizational structure where every entity in the organization, except one, is subordinate to a single other entity. This arrangement is a form of a hierarchy. In an organization, the hierarchy usually consists of a singular/group of power at the top with subsequent levels of power beneath them. This is the dominant mode of organization among large organizations; most corporations, governments, criminal enterprises, and organized religions are hierarchical organizations with different levels of management, power or authority.
Factor baseIn computational number theory, a factor base is a small set of prime numbers commonly used as a mathematical tool in algorithms involving extensive sieving for potential factors of a given integer. A factor base is a relatively small set of distinct prime numbers P, sometimes together with -1. Say we want to factorize an integer n. We generate, in some way, a large number of integer pairs (x, y) for which , , and can be completely factorized over the chosen factor base—that is, all their prime factors are in P.
Organization developmentOrganization development (OD) is the study and implementation of practices, systems, and techniques that affect organizational change. The goal of which is to modify a group's/organization's performance and/or culture. The organizational changes are typically initiated by the group's stakeholders. OD emerged from human relations studies in the 1930s, during which psychologists realized that organizational structures and processes influence worker behavior and motivation.
Fonctionnement et organisation de l'entrepriseLes formes d'organisation (ou structure) d'une entreprise définissent la façon dont est découpé et coordonné le travail au sein d'une entreprise, et le mode de fonctionnement qui en découle. Cette organisation varie considérablement d'une entreprise à l'autre Les paramètres qui expliquent cette diversité sont eux-mêmes nombreux et leurs combinaisons multiples justifient les innombrables variantes pratiquées par les organisations : Paramètres externes = secteur d'activité et métier, clientèle(s), technologies, filière technico-économique, situation concurrentielle, taille et maturité.
Algorithme de ShorEn arithmétique modulaire et en informatique quantique, l’algorithme de Shor est un algorithme quantique conçu par Peter Shor en 1994, qui factorise un entier naturel N en temps O et en espace . Beaucoup de cryptosystèmes à clé publique, tels que le RSA, deviendraient vulnérables si l'algorithme de Shor était un jour implanté dans un calculateur quantique pratique. Un message chiffré avec RSA peut être déchiffré par factorisation de sa clé publique N, qui est le produit de deux nombres premiers.
Matrice d'adjacenceEn mathématiques, en théorie des graphes, en informatique, une matrice d'adjacence pour un graphe fini à n sommets est une matrice de dimension n × n dont l'élément non diagonal a est le nombre d'arêtes liant le sommet i au sommet j. L'élément diagonal a est le nombre de boucles au sommet i (pour des graphes simples, ce nombre est donc toujours égal à 0 ou 1). Cet outil mathématique est très utilisé comme structure de données en informatique (tout comme la représentation par liste d'adjacence), mais intervient aussi naturellement dans les chaînes de Markov.
Matrice triangulairevignette|algèbre linéaire En algèbre linéaire, une matrice triangulaire est une matrice carrée dont tous les coefficients sont nuls d’un côté ou de l’autre de la diagonale principale. C’est en particulier le cas si la matrice est diagonale. Une matrice est triangulaire stricte si elle est triangulaire et que tous ses coefficients diagonaux sont nuls. Dans ce qui suit, on considérera un anneau unitaire R non forcément commutatif, des R-modules à gauche et des R-modules à droite.
Definite matrixIn mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector where is the transpose of . More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number is positive for every nonzero complex column vector where denotes the conjugate transpose of Positive semi-definite matrices are defined similarly, except that the scalars and are required to be positive or zero (that is, nonnegative).
Matrice laplacienneEn théorie des graphes, une matrice laplacienne, ou matrice de Laplace, est une matrice représentant un graphe. La matrice laplacienne d'un graphe G non orienté et non réflexif est définie par : où est la matrice des degrés de G et la matrice d'adjacence de G. Formellement : A la différence de la matrice d'adjacence d'un graphe, la matrice laplacienne a une interprétation algébrique ce qui rend son analyse spectrale fructueuse. Plus précisément la matrice correspond à l'opérateur de diffusion sur le graphe.