Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
This paper proposes a novel and simple local neural classifier for the recognition of mental tasks from on-line spontaneous EEG signals. The proposed neural classifier recognizes three mental tasks from on-line spontaneousEEGsignals. Correct recognition is around 70%. This modest rate is largely compensated by two properties, namely low percentage of wrong decisions (below 5%) and rapid responses (every 1/2 s). Interestingly, the neural classifier achieves this performance with a few units, normally just one per mental task. Also, since the subject and his/her personal interface learn simultaneously from each other, subjects master it rapidly (in a few days of moderate training). Finally, analysis of learned EEG patterns confirms that for a subject to operate satisfactorily a brain interface, the latter must fit the individual features of the former.
Mahsa Shoaran, Uisub Shin, Gregor Rainer, Mohammad Ali Shaeri, Amitabh Yadav
Mathias Josef Payer, Zhiyao Feng, Chunmin Zhang, Ji Shi