Acquisition compriméeL'acquisition comprimée (en anglais compressed sensing) est une technique permettant de trouver la solution la plus parcimonieuse d'un système linéaire sous-déterminé. Elle englobe non seulement les moyens pour trouver cette solution mais aussi les systèmes linéaires qui sont admissibles. En anglais, elle porte le nom de Compressive sensing, Compressed Sampling ou Sparse Sampling.
Camérathumb|Arrière de la caméra argentique Mitchell BNC dotée en supplément sur le côté droit d'un enregistreur vidéo analogique, utilisée par Stanley Kubrick pour pouvoir rapidement monter un "brouillon" de son film Apocalypse Now lors du tournage, avant toute opération de montage sur la pellicule photographique même. Une caméra est un appareil de prise de vues destiné à enregistrer ou à transmettre des images photographiques successives afin de restituer l'impression de mouvement pour le cinéma, la télévision, la recherche, la télésurveillance, l'imagerie industrielle et , ou bien pour d'autres applications, professionnelles ou domestiques.
Appareil photographique numériqueUn appareil photographique numérique (ou APN) est un appareil photographique qui recueille la lumière sur un capteur photographique électronique, plutôt que sur une pellicule photographique, et qui convertit l'information reçue par ce support pour la coder numériquement. Un appareil photo numérique utilise un capteur CCD ou CMOS pour acquérir les images, et les enregistre habituellement sur des cartes mémoire (CompactFlash, SmartMedia, Memory Stick, Secure Digital, etc.).
Théorème d'échantillonnageLe théorème d'échantillonnage, dit aussi théorème de Shannon ou théorème de Nyquist-Shannon, établit les conditions qui permettent l'échantillonnage d'un signal de largeur spectrale et d'amplitude limitées. La connaissance de plus de caractéristiques du signal permet sa description par un nombre inférieur d'échantillons, par un processus d'acquisition comprimée. Dans le cas général, le théorème d'échantillonnage énonce que l’échantillonnage d'un signal exige un nombre d'échantillons par unité de temps supérieur au double de l'écart entre les fréquences minimale et maximale qu'il contient.
Sparse dictionary learningSparse dictionary learning (also known as sparse coding or SDL) is a representation learning method which aims at finding a sparse representation of the input data in the form of a linear combination of basic elements as well as those basic elements themselves. These elements are called atoms and they compose a dictionary. Atoms in the dictionary are not required to be orthogonal, and they may be an over-complete spanning set. This problem setup also allows the dimensionality of the signals being represented to be higher than the one of the signals being observed.
Variation totale d'une fonctionEn mathématiques, la variation totale est liée à la structure (locale ou globale) du codomaine d'une fonction. Pour une fonction continue à valeurs réelles f, définie sur un intervalle [a, b] ⊂ R, sa variation totale sur l'intervalle de définition est une mesure de la longueur d'arc de la projection sur l'axe des ordonnées de la courbe paramétrée (x, f(x)), pour x ∈ [a, b]. L'idée de variation totale pour les fonctions d'une variable réelle a d'abord été introduite par Camille Jordan, afin de démontrer un théorème de convergence pour les séries de Fourier de fonctions discontinues périodiques à variation bornée.
Photophone (appareil)Photophone est un mot introduit en 2002 pour désigner les téléphones mobiles dont le capteur permet de prendre des photos numériques de haute capables de concurrencer celles des appareils photographiques numériques compacts. Dans cette acception, la majorité des téléphones mobiles commercialisés actuellement, smartphones et téléphones mobiles basiques (excepté les produits d'entrée de gamme) correspondent à cette définition du photophone. thumb|Sony Ericsson K800i, l'un des premiers téléphones portables à être équipé d'un capteur de 3,2 mégapixels.
Total variation denoisingIn signal processing, particularly , total variation denoising, also known as total variation regularization or total variation filtering, is a noise removal process (filter). It is based on the principle that signals with excessive and possibly spurious detail have high total variation, that is, the integral of the absolute is high. According to this principle, reducing the total variation of the signal—subject to it being a close match to the original signal—removes unwanted detail whilst preserving important details such as .
Nyquist rateIn signal processing, the Nyquist rate, named after Harry Nyquist, is a value (in units of samples per second or hertz, Hz) equal to twice the highest frequency (bandwidth) of a given function or signal. When the function is digitized at a higher sample rate (see ), the resulting discrete-time sequence is said to be free of the distortion known as aliasing. Conversely, for a given sample-rate the corresponding Nyquist frequency in Hz is one-half the sample-rate.
Sparse approximationSparse approximation (also known as sparse representation) theory deals with sparse solutions for systems of linear equations. Techniques for finding these solutions and exploiting them in applications have found wide use in , signal processing, machine learning, medical imaging, and more. Consider a linear system of equations , where is an underdetermined matrix and . The matrix (typically assumed to be full-rank) is referred to as the dictionary, and is a signal of interest.