Near-Optimal Bayesian Localization via Incoherence and Sparsity
Publications associées (45)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Recent results have underlined the importance of incoherence in redundant dictionaries for a good behavior of decomposition algorithms like Matching and Basis Pursuits. However, appropriate dictionaries for a given application may not necessarily be able t ...
Compressed sensing (CS) suggests that a signal, sparse in some basis, can be recovered from a small number of random projections. In this paper, we apply the CS theory on sparse background-subtracted silhouettes and show the usefulness of such an approach ...
Approximating a signal or an image with a sparse linear expansion from an over-complete dictionary of atoms is an extremely useful tool to solve many signal processing problems. Finding the sparsest approximation of a signal from an arbitrary dictionary is ...
Natural images are often modeled through piecewise-smooth regions. Region edges, which correspond to the contours of the objects, become, in this model, the main information of the signal. Contours have the property of being smooth functions along the dire ...
In the last decade we observed an increasing interaction between data compression and sparse signals approximations. Sparse approximations are desirable because they compact the energy of the signals in few elements and correspond to a structural simplific ...
Typical tasks in signal processing may be done in simpler ways or more efficiently if the signals to analyze are represented in a proper way. This thesis deals with some algorithmic problems related to signal approximation, more precisely, in the novel fie ...
This paper introduces a sparse signal representation algorithm in redundant dictionaries, called the M-Term Pursuit (MTP), with an application to image representation and scalable coding. The MTP algorithm belongs to the framework of the matching pursuit ( ...
This paper studies the problem of sparse signal approximation over redundant dictionaries. Our attention is focused on the minimization of a cost function where the error is measured by using the L1 norm, giving thus less importance to outliers. We show a ...
This article presents an alteration of greedy algorithms like thresholding or (Orthogonal) Matching Pursuit which improves their performance in finding sparse signal representations in redundant dictionaries. These algorithms can be split into a sensing an ...
Video signals are sequences of natural images, where images are often modeled as piecewise-smooth signals. Hence, video can be seen as a 3D piecewise-smooth signal made of piecewise-smooth regions that move through time. Based on the piecewise-smooth model ...