Publication

A simple test to check the optimality of sparse signal approximations

Pierre Vandergheynst, Rémi Gribonval
2005
Article de conférence
Résumé

Approximating a signal or an image with a sparse linear expansion from an over-complete dictionary of atoms is an extremely useful tool to solve many signal processing problems. Finding the sparsest approximation of a signal from an arbitrary dictionary is an NP-hard problem. Despite of this, several algorithms have been proposed that provide sub-optimal solutions. However, it is generally difficult to know how close the computed solution is to being ``optimal'', and whether another algorithm could provide a better result. In this paper we provide a simple test to check whether the output of a sparse approximation algorithm is nearly optimal, in the sense that no significantly different linear expansion from the dictionary can provide both a smaller approximation error and a better sparsity. As a by-product of our theorems, we obtain results on the identifiability of sparse over-complete models in the presence of noise, for a fairly large class of sparse priors.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.