Théorie de jaugeEn physique théorique, une théorie de jauge est une théorie des champs basée sur un groupe de symétrie locale, appelé groupe de jauge, définissant une « invariance de jauge ». Le prototype le plus simple de théorie de jauge est l'électrodynamique classique de Maxwell. L'expression « invariance de jauge » a été introduite en 1918 par le mathématicien et physicien Hermann Weyl. La première théorie des champs à avoir une symétrie de jauge était la formulation de l'électrodynamisme de Maxwell en 1864 dans .
Théorie de jauge supersymétriqueEn théorie quantique des champs, une théorie de jauge supersymétrique est une théorie possédant une ou plusieurs supersymétries (dans le cas de plusieurs supersymétries on parle de supersymétrie étendue) et incorporant également une symétrie de jauge tout comme les théories de jauge ordinaires non-supersymétriques. Les théories de jauge contenant toujours un ou plusieurs champs de jauge qui sont des champs de spin 1, la présence de la supersymétrie nécessite qu'un tel champ vectoriel soit accompagné d'un partenaire fermionique de spin 1/2 appelé jaugino.
Symétrie (physique)En physique la notion de symétrie, qui est intimement associée à la notion d'invariance, renvoie à la possibilité de considérer un même système physique selon plusieurs points de vue distincts en termes de description mais équivalents quant aux prédictions effectuées sur son évolution. Une théorie physique possède alors une symétrie S, si toute équation dans cette théorie décrit tout aussi correctement une particule ρ qu'une particule -ρ 'symétrique' de ρ.
SupersymétrieLa supersymétrie (abrégée en SuSy) est une symétrie supposée de la physique des particules qui postule une relation profonde entre les particules de spin demi-entier (les fermions) qui constituent la matière et les particules de spin entier (les bosons) véhiculant les interactions. Dans le cadre de la SuSy, chaque fermion est associé à un « superpartenaire » de spin entier, alors que chaque boson est associé à un « superpartenaire » de spin demi-entier.
Gauge symmetry (mathematics)In mathematics, any Lagrangian system generally admits gauge symmetries, though it may happen that they are trivial. In theoretical physics, the notion of gauge symmetries depending on parameter functions is a cornerstone of contemporary field theory. A gauge symmetry of a Lagrangian is defined as a differential operator on some vector bundle taking its values in the linear space of (variational or exact) symmetries of . Therefore, a gauge symmetry of depends on sections of and their partial derivatives.
Gauge fixingIn the physics of gauge theories, gauge fixing (also called choosing a gauge) denotes a mathematical procedure for coping with redundant degrees of freedom in field variables. By definition, a gauge theory represents each physically distinct configuration of the system as an equivalence class of detailed local field configurations. Any two detailed configurations in the same equivalence class are related by a gauge transformation, equivalent to a shear along unphysical axes in configuration space.
Brisure de symétrieUne symétrie est brisée quand un système ou les lois qui régissent son comportement ne cessent d'être invariants sous la transformation associée à cette symétrie. On observe des brisures de symétrie en physique (de l'échelle microscopique jusqu'à celle de l'Univers), en chimie (dont de nombreuses transitions de phase) et en biologie (par exemple l'asymétrie gauche-droite chez les Bilatériens). Une symétrie est explicitement brisée lorsque la loi qui régit son comportement est modifiée et n'est plus invariante dû à une cause externe.
Brisure spontanée de symétrieEn physique, le terme brisure spontanée de symétrie (BSS) renvoie au fait que, sous certaines conditions, certaines propriétés de la matière ne semblent pas respecter les équations décrivant le mouvement des particules (on dit qu'elles n'ont pas les mêmes symétries). Cette incohérence n'est qu'apparente et signifie simplement que les équations présentent une approximation à améliorer. Cette notion joue un rôle important en physique des particules et en physique de la matière condensée.
Boson de jaugeEn physique des particules, un boson de jauge est une particule élémentaire de la classe des bosons qui agit comme porteur d'une interaction élémentaire. Plus spécifiquement, les particules élémentaires dont les interactions sont décrites par une théorie de jauge exercent l'une sur l'autre des forces par échange de bosons de jauge, généralement sous forme de particules virtuelles. Le modèle standard décrit trois sortes de bosons de jauge : les photons, les bosons W et Z et les gluons.
Interaction spin-orbitevignette|Structures fines et hyperfines dans l'hydrogène. Le couplage des différents moments cinétiques conduit à la division du niveau d'énergie. Non dessiné à l'échelle. Le moment cinétique de spin électronique, S est couplé au moment cinétique orbital électronique, L, pour former le moment angulaire électronique total , J. Celui-ci est ensuite couplé au moment cinétique de spin nucléaire, I, pour former le moment cinétique total, F. Le terme symbole prend la forme 2S+1L avec les valeurs de L représentées par des lettres (S,P,D ,F ,G,H,.