La Quadrature de la parabole (Archimède)thumb|Archimède inscrit un triangle particulier dans le segment de parabole. L'aire du segment de parabole est égale aux 4/3 de l'aire de ce triangle. La Quadrature de la parabole est un traité de géométrie écrit par Archimède au , sous la forme d'une lettre à son ami Dosithée (Dositheus). Cette œuvre énonce 24 propositions sur les paraboles et démontre que l'aire d'un segment de parabole (région délimitée par une parabole et une corde) est égale aux 4/3 de l'aire du triangle inscrit dont la médiane est parallèle à l'axe de la parabole.
Numerical methods for linear least squaresNumerical methods for linear least squares entails the numerical analysis of linear least squares problems. A general approach to the least squares problem can be described as follows. Suppose that we can find an n by m matrix S such that XS is an orthogonal projection onto the image of X. Then a solution to our minimization problem is given by simply because is exactly a sought for orthogonal projection of onto an image of X (see the picture below and note that as explained in the next section the image of X is just a subspace generated by column vectors of X).
Arithmétique multiprécisionL'arithmétique multiprécision désigne l'ensemble des techniques mises en œuvre pour manipuler dans un programme informatique des nombres (entiers, rationnels, ou flottants principalement) de taille arbitraire. Il s'agit d'une branche de l'arithmétique des ordinateurs. On oppose l'arithmétique multi-précision à l'arithmétique en simple ou double précision, comme celle spécifiée par le standard IEEE 754 pour les nombres flottants.
Optimisation linéairethumb|upright=0.5|Optimisation linéaire dans un espace à deux dimensions (x1, x2). La fonction-coût fc est représentée par les lignes de niveau bleues à gauche et par le plan bleu à droite. L'ensemble admissible E est le pentagone vert. En optimisation mathématique, un problème d'optimisation linéaire demande de minimiser une fonction linéaire sur un polyèdre convexe. La fonction que l'on minimise ainsi que les contraintes sont décrites par des fonctions linéaires, d'où le nom donné à ces problèmes.
Reduced chi-squared statisticIn statistics, the reduced chi-square statistic is used extensively in goodness of fit testing. It is also known as mean squared weighted deviation (MSWD) in isotopic dating and variance of unit weight in the context of weighted least squares. Its square root is called regression standard error, standard error of the regression, or standard error of the equation (see ) It is defined as chi-square per degree of freedom: where the chi-squared is a weighted sum of squared deviations: with inputs: variance , observations O, and calculated data C.
Erreur quadratique moyenneEn statistiques, l’erreur quadratique moyenne d’un estimateur d’un paramètre de dimension 1 (mean squared error (), en anglais) est une mesure caractérisant la « précision » de cet estimateur. Elle est plus souvent appelée « erreur quadratique » (« moyenne » étant sous-entendu) ; elle est parfois appelée aussi « risque quadratique ».
Méthode des éléments finis de frontièreLa méthode des éléments finis de frontière, méthode des éléments frontière ou BEM - Boundary Element Method - en anglais, est une méthode de résolution numérique. Elle se présente comme une alternative à la méthode des éléments finis avec la particularité d'être plus intéressante dans les domaines de modélisation devenant infinis. Méthode des moments (analyse numérique) Méthode des différences finies Méthode des volumes finis Méthode des éléments finis Méthode des points sources distribués Introduction à l
Algèbre linéairevignette|R3 est un espace vectoriel de dimension 3. Droites et plans qui passent par l'origine sont des sous-espaces vectoriels. L’algèbre linéaire est la branche des mathématiques qui s'intéresse aux espaces vectoriels et aux transformations linéaires, formalisation générale des théories des systèmes d'équations linéaires. L'algèbre linéaire est initiée dans son principe par le mathématicien perse Al-Khwârizmî qui s'est inspiré des textes de mathématiques indiens et qui a complété les travaux de l'école grecque, laquelle continuera de se développer des siècles durant.
Weighted least squaresWeighted least squares (WLS), also known as weighted linear regression, is a generalization of ordinary least squares and linear regression in which knowledge of the unequal variance of observations (heteroscedasticity) is incorporated into the regression. WLS is also a specialization of generalized least squares, when all the off-diagonal entries of the covariance matrix of the errors, are null.
Problème d'affectationEn informatique, plus précisément en recherche opérationnelle et d'optimisation combinatoire, le problème d'affectation consiste à attribuer au mieux des tâches à des agents. Chaque agent peut réaliser une unique tâche pour un coût donné et chaque tâche doit être réalisée par un unique agent. Les affectations (c'est-à-dire les couples agent-tâche) ont toutes un coût défini. Le but est de minimiser le coût total des affectations afin de réaliser toutes les tâches.