Optical pumping in In0.35Ga0.65As/GaAs heterostructures obtained by molecular beam epitaxy at 400 degrees C
Publications associées (45)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Inherent to the nanowire morphology is the exciting possibility of fabricating materials organized at the nanoscale in three dimensions. Composition and structure can be varied along and across the nanowire, as well as within coaxial shells. This opens up ...
Semiconductor quantum wires (QWRs) and quantum dots (QDs) are nanoscale heterostructures, which form fascinating low-dimensional systems for fundamental studies of quantum-mechanical effects and are attractive candidates for integration into optoelectronic ...
A detailed investigation and characterization of the local properties of individual nanoscopic structures is of great importance for the understanding of novel physical phenomena at the nanoscale as well as for the assessment of their possible use in futur ...
Here, I report on a cryogenic cavity optomechanics experiment that has been set up with the goal to cool a mechanical degree of freedom of a fused silica microtoroidal resonator into the quantum regime by means of a combination of cryogenic and laser cooli ...
With the rising need for microfabricated chip-scale atomic clocks to enable high precision timekeeping in portable applications, there has been active interest in developing miniature (
Novel light-emitting devices and micro-optical-circuit elements will rely upon understanding and control of light-matter interaction at the nanoscale. Recent advances in nanofabrication and micro-processing make it possible to develop integrable solid-stat ...
Optical laser fields have been widely used to achieve quantum control over the motional and internal degrees of freedom of atoms and ions(1,2), molecules and atomic gases. A route to controlling the quantum states of macroscopic mechanical oscillators in a ...
The effect of the miscut angle of vicinal substrate on the optical and morphological properties of GaAs/AlxGa1-xAs quantum wells grown by metalorganic vapor phase epitaxy is studied by means of photoluminescence (PL) and atomic force microscopy. Within sma ...
Quantum wells (QWs), quantum wires (QWRs) and quantum dots (QDs) are semiconductor heterostructures with nanoscopic dimensions. At this length scale, their properties are governed by quantum mechanics. The interest in these nanostructures is motivated by a ...
Molecular beam epitaxy is used for the synthesis of catalyst-free GaAs nanowires and related quantum heterostructures. After growth of the nanowire GaAs core, the conditions are changed in situ towards standard MBE planar growth in order to obtain quantum ...