We use photoluminescence and photoluminescence excitation experiments with and without magnetic field to study the electronic properties of InxGa1-xAs/GaAs quantum wells grown on vicinal (001) substrates. We analyze samples of a wide range of In contents (from 17% to 35%) and various misorientation angles (up to 6 degrees). The optical quality of the samples increases with the tilt angle and is explained as mainly controlled by alloy disorder. A fit of the electron-heavy-hole transitions is performed by means of a method which consists of the resolution of a two-dimensional Schrodinger equation and which includes two adjustable parameters: the In surface segregation energy E(s) and the length xi in which the hydrostatic pressure becomes biaxial as defined by the Nagai's model [J. Appl. Phys. 45, 3789 (1974)]. For a given angle and In content the differences between the PL peaks of vicinal and nominal samples present a maximum as a function of the well width, a fact which is well explained by our theoretical model. A study of the exciton dimensionality has been also carried out using models that take dimensionality into account in different manners. (C) 1997 American Institute of Physics.
Pavlos Nikolopoulos, Adrian Perrig, Christos Pappas
Anastasia Ailamaki, Viktor Sanca