Épitaxie par jet moléculaireL'épitaxie par jets moléculaires (ou MBE pour Molecular Beam Epitaxy) est une technique consistant à envoyer un ou plusieurs jets moléculaires vers un substrat préalablement choisi pour réaliser une croissance épitaxiale. Elle permet de faire croître des échantillons nanostructurés de plusieurs à une vitesse d'environ une monocouche atomique par seconde.
Science des surfacesLa science des surfaces est une section de la science des matériaux consacrée à l'étude des phénomènes physiques et chimiques qui se produisent à l' entre deux phases ou entre une phase et le vide. Les propriétés de la matière en surface sont en effet distinctes de celles du cœur des matériaux (bulk). Par exemple, la coordinence des atomes en surface est inférieure à celle des atomes du reste du matériau ce qui induit une réactivité particulière de ces derniers.
ÉpitaxieL'épitaxie est une technique de croissance orientée, l'un par rapport à l'autre, de deux cristaux possédant un certain nombre d'éléments de symétrie communs dans leurs réseaux cristallins. On distingue l'homo-épitaxie, qui consiste à faire croître un cristal sur un cristal de nature chimique identique, et l'hétéro-épitaxie, dans laquelle les deux cristaux sont de natures chimiques différentes. Étymologiquement, « épi » en grec signifie « sur » et « taxis », « arrangement ».
ÉvaporationLévaporation est le passage d'un liquide de l'état liquide à l'état gazeux à sa surface, à une température inférieure à la température d'ébullition. Ce phénomène a pour effet d'absorber de l'énergie thermique, et donc de réduire la température des deux milieux en contact, ou de freiner leur échauffement par une source. Le mot évaporation est emprunté au latin impérial evaporatio, -ionis. Jusqu'à la fin du , on s'intéresse à l'aspect thermodynamique du phénomène et Joseph Black met en évidence la notion de chaleur latente de vaporisation (1761).
Cycle de l'azotevignette|droite|upright=2|Le cycle de l'azote dans le sol Le cycle de l'azote est un cycle biogéochimique qui décrit la succession des modifications subies par les différentes formes de l'azote neutre en formes réactives (diazote, nitrate, nitrite, ammoniac, azote organique) et vice-versa.
Effet isotopique cinétiqueL'effet isotopique cinétique (en anglais, kinetic isotope effect ou KIE) est la variation de la vitesse d'une réaction chimique lorsqu'un atome d'un des réactifs est remplacé par l'un de ses isotopes. Par exemple, le remplacement d'un atome C par un atome C conduit à un effet isotopique cinétique défini par le rapport des constantes de vitesse (on met en général au numérateur la constante qui concerne l'isotope le plus léger). Dans la substitution nucléophile du bromure de méthyle par l'ion cyanure, le rapport mesuré est de .
Épitaxie en phase vapeur aux organométalliquesL'épitaxie en phase vapeur aux organométalliques (EPVOM, aussi connue sous les acronymes anglophones MOVPE — metalorganic vapor phase epitaxy ou MOCVD — metalorganic chemical vapor deposition, terme plus général) est une technique de croissance cristalline dans laquelle les éléments à déposer, sous forme d'organométalliques ou d'hydrures, sont amenés vers le substrat monocristallin par un gaz vecteur. Cette technique de croissance est particulièrement prisée dans l'industrie des semi-conducteurs III-V en raison de la bonne reproductibilité et des fortes vitesses de croissance accessibles.
AzoteL'azote est l'élément chimique de numéro atomique 7, de symbole N (du latin nitrogenium). C'est la tête de file du groupe des pnictogènes. Dans le langage courant, l'azote désigne le corps simple N (diazote), constituant majoritaire de l'atmosphère terrestre, représentant presque les 4/ de l'air (78,06 %, en volume). L'azote est le constituant la croûte terrestre par ordre d'importance.
Cinétique chimiqueLa cinétique chimique est l'étude de la vitesse des réactions chimiques. Sur le plan disciplinaire, elle fait partie de la chimie physique. Certaines réactions sont totales et très rapides, voire instantanées, comme les explosions. D'autres sont tellement lentes qu'elles durent plusieurs années (comme la formation de la rouille), voire plusieurs siècles (comme la formation du charbon ou du pétrole). Certaines sont même tellement lentes que les réactifs de départ sont considérés comme stables, par exemple la transformation du diamant en carbone graphite.
Loi d'Arrheniusvignette|Constante de vitesse en fonction de la température. En cinétique chimique, la loi d'Arrhenius établit la dépendance de la vitesse d'une réaction chimique à la température. Cette loi est énoncée par Svante A. Arrhenius en 1889 dans son article intitulé . Cependant, elle n'est universellement acceptée par ses contemporains que vers 1910. La loi d'Arrhenius est vérifiée expérimentalement par un grand nombre de réactions chimiques ; toutefois, toutes les réactions ne suivent pas cette loi, comme les réactions enzymatiques.