Anomalie (physique)En théorie quantique des champs, on dit qu'une symétrie de la théorie possède une anomalie (ou que la symétrie est anormale) lorsqu'elle est une invariance classique au niveau de l'action mais qu'elle est brisée une fois que la théorie est quantifiée. Plus précisément une anomalie survient lorsque le courant de Noether est conservé au niveau classique mais que les interactions quantiques brisent cette conservation. Cet article présente les différents types d'anomalies que l'on peut rencontrer en physique théorique.
Gravitational anomalyIn theoretical physics, a gravitational anomaly is an example of a gauge anomaly: it is an effect of quantum mechanics — usually a one-loop diagram—that invalidates the general covariance of a theory of general relativity combined with some other fields. The adjective "gravitational" is derived from the symmetry of a gravitational theory, namely from general covariance. A gravitational anomaly is generally synonymous with diffeomorphism anomaly, since general covariance is symmetry under coordinate reparametrization; i.
Gauge anomalyIn theoretical physics, a gauge anomaly is an example of an anomaly: it is a feature of quantum mechanics—usually a one-loop diagram—that invalidates the gauge symmetry of a quantum field theory; i.e. of a gauge theory. All gauge anomalies must cancel out. Anomalies in gauge symmetries lead to an inconsistency, since a gauge symmetry is required in order to cancel degrees of freedom with a negative norm which are unphysical (such as a photon polarized in the time direction). Indeed, cancellation occurs in the Standard Model.
Théorie quantique des champsvignette|296x296px|Ce diagramme de Feynman représente l'annihilation d'un électron et d'un positron, qui produit un photon (représenté par une ligne ondulée bleue). Ce photon se décompose en une paire quark-antiquark, puis l'antiquark émet un gluon (représenté par la courbe verte). Ce type de diagramme permet à la fois de représenter approximativement les processus physiques mais également de calculer précisément leurs propriétés, comme la section efficace de collision.
Théorie de jaugeEn physique théorique, une théorie de jauge est une théorie des champs basée sur un groupe de symétrie locale, appelé groupe de jauge, définissant une « invariance de jauge ». Le prototype le plus simple de théorie de jauge est l'électrodynamique classique de Maxwell. L'expression « invariance de jauge » a été introduite en 1918 par le mathématicien et physicien Hermann Weyl. La première théorie des champs à avoir une symétrie de jauge était la formulation de l'électrodynamisme de Maxwell en 1864 dans .
Gravity anomalyThe gravity anomaly at a location on the Earth's surface is the difference between the observed value of gravity and the value predicted by a theoretical model. If the Earth were an ideal oblate spheroid of uniform density, then the gravity measured at every point on its surface would be given precisely by a simple algebraic expression. However, the Earth has a rugged surface and non-uniform composition, which distorts its gravitational field.
Unified field theoryIn physics, a unified field theory (UFT) is a type of field theory that allows all that is usually thought of as fundamental forces and elementary particles to be written in terms of a pair of physical and virtual fields. According to the modern discoveries in physics, forces are not transmitted directly between interacting objects but instead are described and interpreted by intermediary entities called fields. Classically, however, a duality of the fields is combined into a single physical field.
Scalar field theoryIn theoretical physics, scalar field theory can refer to a relativistically invariant classical or quantum theory of scalar fields. A scalar field is invariant under any Lorentz transformation. The only fundamental scalar quantum field that has been observed in nature is the Higgs field. However, scalar quantum fields feature in the effective field theory descriptions of many physical phenomena. An example is the pion, which is actually a pseudoscalar.
Théorie de jauge sur réseauLa théorie de jauge sur réseau est une branche de la physique théorique, consistant à étudier les propriétés d'une théorie de jauge sur un modèle discret d’espace-temps, caractérisé mathématiquement comme un réseau. Les théories de jauge jouent un rôle fondamental en physique des particules, puisqu'elles unifient les théories actuellement reçues sur les particules élémentaires : l’électrodynamique quantique, la chromodynamique quantique (QCD) et le « Modèle standard ».
Modèle standard de la physique des particulesvignette|upright=2.0|Modèle standard des particules élémentaires avec les trois générations de fermions (trois premières colonnes), les bosons de jauge (quatrième colonne) et le boson de Higgs (cinquième colonne). Le modèle standard de la physique des particules est une théorie qui concerne l'électromagnétisme, les interactions nucléaires faible et forte, et la classification de toutes les particules subatomiques connues. Elle a été développée pendant la deuxième moitié du , dans une initiative collaborative mondiale, sur les bases de la mécanique quantique.