Probabilistic Latent Sequential Motifs: Discovering temporal activity patterns in video scenes
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Inspired by applications in sports where the skill of players or teams competing against each other varies over time, we propose a probabilistic model of pairwise-comparison outcomes that can capture a wide range of time dynamics. We achieve this by replac ...
The identification of accident hot spots is a central task of road safety management. Bayesian count data models have emerged as the workhorse method for producing probabilistic rankings of hazardous sites in road networks. Typically, these methods assume ...
xtreme value analysis is concerned with the modelling of extreme events such as floods and heatwaves, which can have large impacts. Statistical modelling can be useful to better assess risks even if, due to scarcity of measurements, there is inherently ver ...
In recent years, Machine Learning based Computer Vision techniques made impressive progress. These algorithms proved particularly efficient for image classification or detection of isolated objects. From a probabilistic perspective, these methods can predi ...
We propose to formulate the problem of repre-senting a distribution of robot configurations (e.g. joint angles)as that of approximating a product of experts. Our approach uses variational inference, a popular method in Bayesian computation, which has sever ...
A large part of computer vision research is devoted to building models
and algorithms aimed at understanding human appearance and behaviour
from images and videos. Ultimately, we want to build automated systems
that are at least as capable as people when i ...
A novel approach is presented for constructing polynomial chaos representations of scalar quantities of interest (QoI) that extends previously developed methods for adaptation in Homogeneous Chaos spaces. In this work, we develop a Bayesian formulation of ...
The use of smartphone sensing for public health studies is appealing to understand routines. We present an approach to learn nightlife routines in a smartphone sensing dataset volunteered by 184 young people (1586 weekend nights with location data captured ...
In recent years important progress has been achieved towards proving the validity of the replica predictions for the (asymptotic) mutual information (or free energy) in Bayesian inference problems. The proof techniques that have emerged appear to be quite ...
In this work, we formulate the fixed-length distribution matching as a Bayesian inference problem. Our proposed solution is inspired from the compressed sensing paradigm and the sparse superposition (SS) codes. First, we introduce sparsity in the binary so ...