Modèle statistiqueUn modèle statistique est une description mathématique approximative du mécanisme qui a généré les observations, que l'on suppose être un processus stochastique et non un processus déterministe. Il s’exprime généralement à l’aide d’une famille de distributions (ensemble de distributions) et d’hypothèses sur les variables aléatoires X1, . . ., Xn. Chaque membre de la famille est une approximation possible de F : l’inférence consiste donc à déterminer le membre qui s’accorde le mieux avec les données.
Pattern formationThe science of pattern formation deals with the visible, (statistically) orderly outcomes of self-organization and the common principles behind similar patterns in nature. In developmental biology, pattern formation refers to the generation of complex organizations of cell fates in space and time. The role of genes in pattern formation is an aspect of morphogenesis, the creation of diverse anatomies from similar genes, now being explored in the science of evolutionary developmental biology or evo-devo.
Test de convergenceEn mathématiques, les tests de convergence sont des méthodes de test de la convergence, de la convergence absolue ou de la divergence d'une série . Appliqués aux séries entières, ils donnent des moyens de déterminer leur rayon de convergence. Pour que la série converge, il est nécessaire que . Par conséquent, si cette limite est indéfinie ou non nulle, alors la série diverge. La condition n'est pas suffisante, et, si la limite des termes est nulle, on ne peut rien conclure. Toute série absolument convergente converge.
ModélisationLa modélisation est la conception et l'utilisation d'un modèle. Selon son objectif (représentation simplifiée, compréhension, prédiction) et les moyens utilisés, la modélisation est dite mathématique, géométrique, 3D, empirique, mécaniste ( modélisation de réseau trophique dans un écosystème), cinématique... Elle nécessite généralement d'être calée par des observations ou mesures faites , lesquelles servent aussi à paramétrer, calibrer ou ajuster le modèle, par exemple en intégrant des facteurs d'influences qui s'avèreraient nécessaires.
Fractional Fourier transformIn mathematics, in the area of harmonic analysis, the fractional Fourier transform (FRFT) is a family of linear transformations generalizing the Fourier transform. It can be thought of as the Fourier transform to the n-th power, where n need not be an integer — thus, it can transform a function to any intermediate domain between time and frequency. Its applications range from filter design and signal analysis to phase retrieval and pattern recognition.