**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Publication# Fast hard thresholding with Nesterov's gradient method

Résumé

We provide an algorithmic framework for structured sparse recovery which unifies combinatorial optimization with the non-smooth convex optimization framework by Nesterov [1, 2]. Our algorithm, dubbed Nesterov iterative hard-thresholding (NIHT), is similar to the algebraic pursuits (ALPS) in [3] in spirit: we use the gradient information in the convex data error objective to navigate over the non convex set of structured sparse signals. While ALPS feature a priori approximation guarantees, we were only able to provide an online approximation guarantee for NIHT (e.g., the guarantees require the algorithm execution). Experiments show however that NIHT can empirically outperform ALPS and other state-of-the-art convex optimization-based algorithms in sparse recovery.

Official source

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Concepts associés

Chargement

Publications associées

Chargement

Publications associées (12)

Chargement

Chargement

Chargement

Concepts associés (14)

Algorithme

thumb|Algorithme de découpe d'un polygone quelconque en triangles (triangulation).
Un algorithme est une suite finie et non ambiguë d'instructions et d’opérations permettant de résoudre une classe de

Optimisation (mathématiques)

L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur

Optimisation combinatoire

L’optimisation combinatoire, (sous-ensemble à nombre de solutions finies de l'optimisation discrète), est une branche de l'optimisation en mathématiques appliquées et en informatique, également liée

We have developed a new derivative-free algorithm based on Radial Basis Functions (RBFs). Derivative-free optimization is an active field of research and several algorithms have been proposed recently. Problems of this nature in the industrial setting are quite frequent. The reason is that in a number of applications the optimization process contains simulation packages which are treated as black boxes. The development of our own algorithm was originally motivated by an application in biomedical imaging: the medical image registration problem. The particular characteristics of this problem have incited us to develop a new optimization algorithm based on trust-region methods. However it has been designed to be generic and to be applied to a wide range of problems. The main originality of our approach is the use of RBFs to build the models. In particular we have adapted the existing theory based on quadratic models to our own models and developed new procedures especially designed for models based on RBFs. We have tested our algorithm called BOOSTERS against state-of-the-art methods (UOBYQA, NEWUOA, DFO). On the medical image registration problem, BOOSTERS appears to be the method of choice. The tests on problems from the CUTEr collection show that BOOSTERS is comparable to, but not better than other methods on small problems (size 2-20). It is performing very well for medium size problems (20-80). Moreover, it is able to solve problems of dimension 200, which is considered very large in derivative-free optimization. We have also developed a new class of algorithms combining the robustness of derivative-free algorithms with the faster rate of convergence characterizing Newtonlike-methods. In fact, they define a new class of algorithms lying between derivative-free optimization and quasi-Newton methods. These algorithms are built on the skeleton of our derivative-free algorithm but they can incorporate the gradient when it is available. They can be interpreted as a way of doping derivative-free algorithms with derivatives. If the derivatives are available at each iteration, then our method can be seen as an alternative to quasi-Newton methods. At the opposite, if the derivatives are never evaluated, then the algorithm is totally similar to BOOSTERS. It is a very interesting alternative to existing methods for problems whose objective function is expensive to evaluate and when the derivatives are not available. In this situation, the gradient can be approximated by finite differences and its costs corresponds to n additional function evaluations assuming that Rn is the domain of definition of the objective function. We have compared our method with CFSQP and BTRA, two gradient-based algorithms, and the results show that our doped method performs best. We have also a theoretical analysis of the medical image registration problem based on maximization of mutual information. Most of the current research in this field is concentrated on registration based on nonlinear image transformation. However, little attention has been paid to the theoretical properties of the optimization problem. In our analysis, we focus on the continuity and the differentiability of the objective function. We show in particular that performing a registration without extension of the reference image may lead to discontinuities in the objective function. But we demonstrate that, under some mild assumptions, the function is differentiable almost everywhere. Our analysis is important from an optimization point of view and conditions the choice of a solver. The usual practice is to use generic optimization packages without worrying about the differentiability of the objective function. But the use of gradient-based methods when the objective function is not differentiable may result in poor performance or even in absence of convergence. One of our objectives with this analysis is also that practitioners become aware of these problems and to propose them new algorithms having a potential interest for their applications.

The Steiner tree problem is one of the most fundamental $\mathbf{NP}$-hard problems: given a weighted undirected graph and a subset of terminal nodes, find a minimum-cost tree spanning the terminals. In a sequence of papers, the approximation ratio for this problem was improved from $2$ to the current best $1.55$ [Robins,Zelikovsky-SIDMA'05]. All these algorithms are purely combinatorial. A long-standing open problem is whether there is an LP-relaxation for Steiner tree with integrality gap smaller than $2$ [Vazirani,Rajagopalan-SODA'99]. In this paper we improve the approximation factor for Steiner tree, developing an LP-based approximation algorithm. Our algorithm is based on a, seemingly novel, \emph{iterative randomized rounding} technique. We consider a directed-component cut relaxation for the $k$-restricted Steiner tree problem. We sample one of these components with probability proportional to the value of the associated variable in the optimal fractional solution and contract it. We iterate this process for a proper number of times and finally output the sampled components together with a minimum-cost terminal spanning tree in the remaining graph. Our algorithm delivers a solution of cost at most $\ln(4)$ times the cost of an optimal $k$-restricted Steiner tree. This directly implies a $\ln(4)+\varepsilon

,

We describe the first gradient methods on Riemannian manifolds to achieve accelerated rates in the non-convex case. Under Lipschitz assumptions on the Riemannian gradient and Hessian of the cost function, these methods find approximate first-order critical points faster than regular gradient descent. A randomized version also finds approximate second-order critical points. Both the algorithms and their analyses build extensively on existing work in the Euclidean case. The basic operation consists in running the Euclidean accelerated gradient descent method (appropriately safe-guarded against non-convexity) in the current tangent space, then moving back to the manifold and repeating. This requires lifting the cost function from the manifold to the tangent space, which can be done for example through the Riemannian exponential map. For this approach to succeed, the lifted cost function (called the pullback) must retain certain Lipschitz properties. As a contribution of independent interest, we prove precise claims to that effect, with explicit constants. Those claims are affected by the Riemannian curvature of the manifold, which in turn affects the worst-case complexity bounds for our optimization algorithms.