Publication

Existence And Stability Of High Frequency Standing Waves For A Nonlinear Schrodinger Equation

Résumé

This article is concerned with the existence and orbital stability of standing waves for a nonlinear Schrodinger equation (NLS) with a nonautonomous nonlinearity. It continues and concludes the series of papers [6, 7, 8]. In [6], the authors make use of a continuation argument to establish the existence in R x H-1(R-N) of a smooth local branch of solutions to the stationary elliptic problem associated with (NLS) and hence the existence of standing wave solutions of (NLS) with small frequencies. Complementary conditions on the nonlinearity are found, under which either stability of the standing waves and bifurcation of the branch of solutions from the point (0, 0) is an element of R x H-1 (R-N) occur, or instability and asymptotic bifurcation occur. The main hypotheses in [6] concern the behaviour of the nonlinearity with respect to the space variable at infinity. The paper [7] extends the results of [6] to (NLS) with more general nonlinearities. In [8], the global continuation of the local branch obtained in [6] is proved under additional hypotheses on the nonlinearity. In particular, spherical symmetry with respect to the space variable is assumed. The aim of the present work is to prove the existence and discuss the orbital stability of standing waves with high frequencies, independently of the results obtained in [6] and [8]. The main hypotheses now concern the behaviour of the nonlinearity with respect to the space variable around the origin. The methods are the same in spirit as that of [6] and permit to discuss the asymptotic behaviour of the global branch of solutions obtained in [8].

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (38)
Diagramme de bifurcation
droite|vignette|Diagramme de bifurcation de la suite logistique. En mathématiques, et en particulier dans l'étude des systèmes dynamiques, un diagramme de bifurcation illustre les valeurs visitées asymptotiquement (points fixes, points périodiques, attracteurs chaotiques) par un système en fonction d'un paramètre. Fichier:Bifurcation DiagramB.png|Diagramme de bifurcation pour l'[[attracteur de Rössler]]. Fichier:Henon bifurcation map b=0.3.png|Diagramme de bifurcation pour l'[[attracteur de Hénon]].
Onde stationnaire
vignette|redresse=2|Onde stationnaire résultant de la superposition d'ondes de sens inverse ; les points rouges sont les nœuds de vibration. En physique ondulatoire, une est une oscillation locale dans un milieu clos, qui ne se propage pas. On appelle les points où l'amplitude est nulle des nœuds de vibration, et ceux où l'amplitude est maximale des ventres de vibration. Dans un milieu à une dimension, comme un conducteur électrique ou un tuyau, elle est la résultante de la superposition d'ondes de même fréquence et de même amplitude mais de sens de propagation opposé .
Radio-fréquence
Le terme radio-fréquence (souvent abrégé en RF) désigne une fréquence d'onde électromagnétique située entre et (entre et ), ce qui inclut les fréquences utilisées par différents moyens de radiocommunication, notamment la téléphonie mobile, le Wi-Fi ou la radiodiffusion, ainsi que des signaux destinés à d'autres usages comme les radars ou les fours à micro-ondes. Les ondes utilisant de telles fréquences sont les ondes radio.
Afficher plus
Publications associées (52)

From thin plates to Ahmed bodies: linear and weakly nonlinear stability of rectangular prisms

Edouard Boujo, Giuseppe Antonio Zampogna

We study the stability of laminar wakes past three-dimensional rectangular prisms. The width-to-height ratio is set to W/H = 1.2, while the length-to-height ratio 1/6 < L/H < 3 covers a wide range of geometries from thin plates to elongated Ahmed bodies. F ...
CAMBRIDGE UNIV PRESS2023

Bifurcations in mountain rivers: insights on their hydraulics from field measurements.

Christophe Ancey, Ivan Pascal, Bob de Graffenried, Raphaël Miazza

Although the importance of studying channel bifurcations is widely recognised, their hydraulic behaviour in shallow, rough mountain rivers has so far received little attention from researchers. Understanding the specific hydraulics of such units is essenti ...
2023

Learning dynamical systems with bifurcations

Aude Billard, Farshad Khadivar, Ilaria Lauzana

Trajectory planning through dynamical systems (DS) provides robust control for robots and has found numerous applications from locomotion to manipulation. However, to date, DS for controlling rhythmic patterns are distinct from DS used to control point to ...
2021
Afficher plus
MOOCs associés (5)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.