Diagramme de bifurcationdroite|vignette|Diagramme de bifurcation de la suite logistique. En mathématiques, et en particulier dans l'étude des systèmes dynamiques, un diagramme de bifurcation illustre les valeurs visitées asymptotiquement (points fixes, points périodiques, attracteurs chaotiques) par un système en fonction d'un paramètre. Fichier:Bifurcation DiagramB.png|Diagramme de bifurcation pour l'[[attracteur de Rössler]]. Fichier:Henon bifurcation map b=0.3.png|Diagramme de bifurcation pour l'[[attracteur de Hénon]].
Onde stationnairevignette|redresse=2|Onde stationnaire résultant de la superposition d'ondes de sens inverse ; les points rouges sont les nœuds de vibration. En physique ondulatoire, une est une oscillation locale dans un milieu clos, qui ne se propage pas. On appelle les points où l'amplitude est nulle des nœuds de vibration, et ceux où l'amplitude est maximale des ventres de vibration. Dans un milieu à une dimension, comme un conducteur électrique ou un tuyau, elle est la résultante de la superposition d'ondes de même fréquence et de même amplitude mais de sens de propagation opposé .
Radio-fréquenceLe terme radio-fréquence (souvent abrégé en RF) désigne une fréquence d'onde électromagnétique située entre et (entre et ), ce qui inclut les fréquences utilisées par différents moyens de radiocommunication, notamment la téléphonie mobile, le Wi-Fi ou la radiodiffusion, ainsi que des signaux destinés à d'autres usages comme les radars ou les fours à micro-ondes. Les ondes utilisant de telles fréquences sont les ondes radio.
Théorie de la stabilitéEn mathématiques, la théorie de la stabilité traite la stabilité des solutions d'équations différentielles et des trajectoires des systèmes dynamiques sous des petites perturbations des conditions initiales. L'équation de la chaleur, par exemple, est une équation aux dérivées partielles stable parce que des petites perturbations des conditions initiales conduisent à des faibles variations de la température à un temps ultérieur en raison du principe du maximum.
Théorie des bifurcationsLa théorie des bifurcations, en mathématiques et en physique est l'étude de certains aspects des systèmes dynamiques. Une bifurcation intervient lorsqu'un petit changement d'un paramètre physique produit un changement majeur dans l'organisation du système. Des exemples classiques d'une bifurcation en sciences pures sont par exemple les rythmes circadiens de populations animales en biologie théorique et les solutions de météo en mathématique et physique non linéaire, en sciences de l'ingénieur il y a aussi le flambage d'une poutre élastique (l'expérience peut être faite avec une règle d'écolier) ou les transitions de phase de matériaux (température critique de bifurcation, concentration critique).
Rapport d'ondes stationnairesLe rapport d'ondes stationnaires (ROS) ou standing wave ratio (SWR) en anglais, et le taux d'ondes stationnaires (TOS) expriment la qualité de l'adaptation d'antenne, à une ligne de transmission, coaxiale ou bifilaire. Dans une ligne de transmission coexistent une onde incidente, d'amplitude , et une onde réfléchie, d'amplitude . La superposition de ces deux ondes va produire une onde résultante dont l'amplitude va varier le long de la ligne. On observera des maxima aux endroits où l'onde incidente et l'onde réfléchie produisent des interférences constructives.
Supra-haute fréquenceOn appelle supra-haute fréquence (SHF), , la bande de radiofréquences qui s'étend de à (longueur d'onde de à ). Les SHF font partie des micro-ondes. Les techniciens et ingénieurs français parlent plutôt d'hyperfréquences et leur domaine s'étendait de à . Cette appellation d'« hyperfréquences » est également officielle en France, d'après une Commission générale de terminologie et de néologie. Les SHF sont en particulier utilisées dans les fours à micro-ondes pour agiter les molécules d'eau.
Delimited continuationIn programming languages, a delimited continuation, composable continuation or partial continuation, is a "slice" of a continuation frame that has been reified into a function. Unlike regular continuations, delimited continuations return a value, and thus may be reused and composed. Control delimiters, the basis of delimited continuations, were introduced by Matthias Felleisen in 1988 though early allusions to composable and delimited continuations can be found in Carolyn Talcott's Stanford 1984 dissertation, Felleisen et al.
Continuation-passing styleIn functional programming, continuation-passing style (CPS) is a style of programming in which control is passed explicitly in the form of a continuation. This is contrasted with direct style, which is the usual style of programming. Gerald Jay Sussman and Guy L. Steele, Jr. coined the phrase in AI Memo 349 (1975), which sets out the first version of the Scheme programming language. John C. Reynolds gives a detailed account of the numerous discoveries of continuations.
Ondevignette|Propagation d'une onde. Une onde est la propagation d'une perturbation produisant sur son passage une variation réversible des propriétés physiques locales du milieu. Elle se déplace avec une vitesse déterminée qui dépend des caractéristiques du milieu de propagation. vignette|Une vague s'écrasant sur le rivage. Il existe trois principaux types d'ondes : les ondes mécaniques se propagent à travers une matière physique dont la substance se déforme. Les forces de restauration inversent alors la déformation.