Multiplicité (mathématiques)En mathématiques, on définit pour certaines propriétés la multiplicité d'une valeur ayant cette propriété. Il s'agit en général d'un nombre naturel qui indique « combien de fois » la valeur possède la propriété. Cela est dépourvu de sens en général (on possède une propriété ou on ne la possède pas), mais une interprétation naturelle existe dans certains cas. En général une propriété pour laquelle des multiplicités sont définies détermine un multiensemble de valeurs plutôt qu'un simple ensemble.
Groupe de BrauerEn mathématiques, le groupe de Brauer, nommé d'après Richard Brauer, constitue l'espace classifiant des algèbres centrales simples sur un corps commutatif k donné, pour une certaine relation d'équivalence. On munit cet espace d'une structure de groupe abélien en l'identifiant à un espace de cohomologie galoisienne. Une algèbre centrale simple sur un corps commutatif k, est une algèbre associative de dimension finie A, qui n'admet aucun idéal bilatère non trivial (simplicité), et dont le centre est k (centralité).
Smooth morphismIn algebraic geometry, a morphism between schemes is said to be smooth if (i) it is locally of finite presentation (ii) it is flat, and (iii) for every geometric point the fiber is regular. (iii) means that each geometric fiber of f is a nonsingular variety (if it is separated). Thus, intuitively speaking, a smooth morphism gives a flat family of nonsingular varieties. If S is the spectrum of an algebraically closed field and f is of finite type, then one recovers the definition of a nonsingular variety.