Concept

Groupe de Brauer

Résumé
En mathématiques, le groupe de Brauer, nommé d'après Richard Brauer, constitue l'espace classifiant des algèbres centrales simples sur un corps commutatif k donné, pour une certaine relation d'équivalence. On munit cet espace d'une structure de groupe abélien en l'identifiant à un espace de cohomologie galoisienne. Une algèbre centrale simple sur un corps commutatif k, est une algèbre associative de dimension finie A, qui n'admet aucun idéal bilatère non trivial (simplicité), et dont le centre est k (centralité). Par exemple, le corps des nombres complexes forme une algèbre centrale simple sur lui-même, mais pas sur le corps des nombres réels, la propriété de centralité étant en défaut. En revanche, l'algèbre des quaternions d'Hamilton est une algèbre centrale simple sur le corps des nombres réels. On forme le produit tensoriel de deux algèbres A et B en définissant une multiplication sur le produit tensoriel d'espaces vectoriels A ⊗ B, en étendant par bilinéarité la définition (a⊗b)(c⊗d) = ac⊗bd. Un produit tensoriel de deux algèbres centrales simples est une algèbre centrale simple. La première caractérisation importante des algèbres centrales simples est que ce sont exactement les algèbres A de dimension finie qui deviennent isomorphes à une algèbre de matrices Mn(K) par extension des scalaires à une extension finie K du corps k ; c'est-à-dire en considérant le produit tensoriel . Par ailleurs, le théorème de Wedderburn assure que toute algèbre simple est isomorphe à une algèbre de matrices à coefficients dans un corps (non commutatif) D contenant k, le corps D étant unique à isomorphisme près. On introduit alors la relation suivante : deux algèbres centrales simples A et A sont équivalentes si et seulement si le même corps D peut être choisi pour les deux dans ce qui précède. Une autre définition équivalente consiste à demander qu'il existe des entiers m et n tels qu'on ait un isomorphisme d'algèbres . Les classes d'équivalence pour cette relation forment alors un groupe abélien pour le produit tensoriel appelé groupe de Brauer'''.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.