An Anisotropic Error Estimator For The Crank-Nicolson Method: Application To A Parabolic Problem
Publications associées (39)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In this thesis we explore uncertainty quantification of forward and inverse problems involving differential equations. Differential equations are widely employed for modeling natural and social phenomena, with applications in engineering, chemistry, meteor ...
A space-time adaptive algorithm is presented to solve the incompressible Navier-Stokes equations. Time discretization is performed with the BDF2 method while continuous, piecewise linear anisotropic finite elements are used for the space discretization. Th ...
This thesis focuses on the numerical analysis of partial differential equations (PDEs) with an emphasis on first and second-order fully nonlinear PDEs. The main goal is the design of numerical methods to solve a variety of equations such as orthogonal maps ...
An a posteriori error estimator based on an equilibrated flux reconstruction is proposed for defeaturing problems in the context of finite element discretizations. Defeaturing consists in the simplification of a geometry by removing features that are consi ...
An a posteriori error estimate is derived for the approximation of the transport equation with a time dependent transport velocity. Continuous, piecewise linear, anisotropic finite elements are used for space discretization, the Crank-Nicolson scheme schem ...
We present a novel framework for the reconstruction of 1D composite signals assumed to be a mixture of two additive components, one sparse and the other smooth, given a finite number of linear measurements. We formulate the reconstruction problem as a cont ...
The null controllability of the heat equation is known for decades [21, 25, 34]. The finite time stabilizability of the one dimensional heat equation was proved by Coron-Nguyên [15], while the same question for high dimensional spaces remained widely open. ...
Multiscale problems, such as modelling flows through porous media or predicting the mechanical properties of composite materials, are of great interest in many scientific areas. Analytical models describing these phenomena are rarely available, and one mus ...
Mathematical models involving multiple scales are essential for the description of physical systems. In particular, these models are important for the simulation of time-dependent phenomena, such as the heat flow, where the Laplacian contains mixed and ind ...
Is consciousness a continuous stream of percepts or is it discrete, occurring only at certain moments in time? This question has puzzled philosophers, psychologists, and neuroscientists for centuries. Both hypotheses have fallen repeatedly in and out of fa ...