MagnétiteLa magnétite est une espèce minérale composée d'oxyde de fer(II,III), de formule (parfois écrit ), avec des traces de magnésium Mg, de zinc Zn, de manganèse Mn, de nickel Ni, de chrome Cr, de titane Ti, de vanadium V et d'aluminium Al. La magnétite est un matériau ferrimagnétique. Les variétés riches en titane sont qualifiées de magnétites titanifères, ou plus souvent de titanomagnétites. Des cristaux de magnétite peuvent être biominéralisés, c'est-à-dire biosynthétisés par certaines espèces vivantes, qui semblent pouvoir les utiliser pour s'orienter dans l'espace.
Spectroscopie RamanLa spectroscopie Raman (ou spectrométrie Raman) et la microspectroscopie Raman sont des méthodes non destructives d'observation et de caractérisation de la composition moléculaire et de la structure externe d'un matériau, qui exploite le phénomène physique selon lequel un milieu modifie légèrement la fréquence de la lumière y circulant. Ce décalage en fréquence dit l'effet Raman correspond à un échange d'énergie entre le rayon lumineux et le milieu, et donne des informations sur le substrat lui-même.
Minerai de fervignette|Rocher formé de minerai de fer rubané, vieux de d'années environ (Musée minéralogique de Dresde). Le minerai de fer est une roche contenant du fer, généralement sous la forme de sulfures, carbonates ou oxydes. L'hématite (oxyde) est le principal minerai utilisé par l'industrie sidérurgique. La teneur en fer des minerais est variable (25 % à 70 %), de sorte que la teneur du minerai est un critère souvent plus important que sa distance géographique d'un point de vue économique.
ÉpitaxieL'épitaxie est une technique de croissance orientée, l'un par rapport à l'autre, de deux cristaux possédant un certain nombre d'éléments de symétrie communs dans leurs réseaux cristallins. On distingue l'homo-épitaxie, qui consiste à faire croître un cristal sur un cristal de nature chimique identique, et l'hétéro-épitaxie, dans laquelle les deux cristaux sont de natures chimiques différentes. Étymologiquement, « épi » en grec signifie « sur » et « taxis », « arrangement ».
Magnetic semiconductorMagnetic semiconductors are semiconductor materials that exhibit both ferromagnetism (or a similar response) and useful semiconductor properties. If implemented in devices, these materials could provide a new type of control of conduction. Whereas traditional electronics are based on control of charge carriers (n- or p-type), practical magnetic semiconductors would also allow control of quantum spin state (up or down).
FerromagnétismeLe ferromagnétisme est le mécanisme fondamental par lequel certains matériaux (fer, cobalt, nickel...) sont attirés par des aimants ou forment des aimants permanents. On distingue en physique différents types de magnétismes. Le ferromagnétisme (qui inclut le ferrimagnétisme) se trouve être celui à l’origine des champs magnétiques les plus importants : c’est celui qui crée des forces suffisamment importantes pour être senties et qui est responsable du phénomène bien connu de magnétisme dans les aimants de la vie quotidienne.
LodestoneLodestones are naturally magnetized pieces of the mineral magnetite. They are naturally occurring magnets, which can attract iron. The property of magnetism was first discovered in antiquity through lodestones. Pieces of lodestone, suspended so they could turn, were the first magnetic compasses, and their importance to early navigation is indicated by the name lodestone, which in Middle English means "course stone" or "leading stone", from the now-obsolete meaning of lode as "journey, way".
WustiteLa wustite est l'espèce minérale de l'oxyde de fer(II) FeO, qu'on retrouve en trace de surface sur le fer natif ou les météorites. La wustite a une couleur grise, avec un éclat verdâtre. Elle cristallise dans le système cristallin cubique, en des grains opaques ou métalliques translucides. Sa dureté de Mohs est comprise entre 5 et 5,5, et une densité de 5,88. Le nom vient de (1860–1938), un métallurgiste allemand, directeur du Kaiser-Wilhelm-Institut für Eisenforschung de Düsseldorf, maintenant appelé Institut Max-Planck de sidérurgie.
Spectroscopie Mössbauerthumb|right|250px|Spectre Mössbauer du 57Fe La spectroscopie Mössbauer est une méthode de spectroscopie basée sur l'absorption de rayons gamma par les noyaux atomiques dans un solide. Par la mesure des transitions entre les niveaux d'énergie de ces noyaux, elle permet de remonter à différentes informations sur l'environnement local de l'atome. Elle doit son nom à Rudolf Mössbauer qui en a posé les bases en 1957 en démontrant l'existence de ces phénomènes d'absorption résonante sans effet de recul, ce qu'on appelle aujourd'hui l'effet Mössbauer.
Diffusion RamanLa diffusion Raman, ou effet Raman, est un phénomène optique découvert indépendamment en 1928 par les physiciens Chandrashekhara Venkata Râman et Leonid Mandelstam. Cet effet consiste en la diffusion inélastique d'un photon, c'est-à-dire le phénomène physique par lequel un milieu peut modifier légèrement la fréquence de la lumière qui y circule. Ce décalage en fréquence correspond à un échange d'énergie entre le rayon lumineux et le milieu. Cet effet physique fut prédit par Adolf Smekal en 1923.