Géométrie moléculaireLa géométrie moléculaire ou structure moléculaire désigne l'arrangement 3D des atomes dans une molécule. . La géométrie moléculaire peut être établie à l'aide de différents outils, dont la spectroscopie et la diffraction. Les spectroscopies infrarouge, rotationnelle et Raman peuvent donner des informations relativement à la géométrie d'une molécule grâce aux absorbances vibrationnelles et rotationnelles. Les diffractométries de rayons X, de neutrons et des électrons peuvent donner des informations à propos des solides cristallins.
Spectrométrie d'absorptionLa spectrométrie d'absorption est une méthode de spectroscopie électromagnétique utilisée pour déterminer la concentration et la structure d'une substance en mesurant l'intensité du rayonnement électromagnétique qu'elle absorbe à des longueurs d'onde différentes. La spectroscopie d'absorption peut être atomique ou moléculaire. Comme indiqué dans le tableau précédent, les rayonnements électromagnétiques exploités en spectroscopie d'absorption moléculaire vont de l'ultraviolet jusqu'aux ondes radio : La couleur d'un corps en transmission (transparence) représente sa capacité à absorber certaines longueurs d'onde.
Onde planeL'onde plane est un concept issu de la physique de la propagation des ondes. C'est une onde dont les fronts d'onde sont des plans infinis, tous perpendiculaires à une même direction de propagation désignée par le vecteur . En prenant par exemple dans la direction z, alors cette onde ne dépend pas des coordonnées x et y : Ainsi, la grandeur mesurée dépend uniquement du temps et d'une seule variable d'espace en coordonnées cartésiennes mais elle ne dépend pas du point considéré dans un plan (P) quelconque orthogonal à la direction de propagation.
Spectroscopie infrarouge à transformée de FourierLa spectroscopie infrarouge à transformée de Fourier ou spectroscopie IRTF (ou encore FTIR, de l'anglais Fourier Transform InfraRed spectroscopy) est une technique utilisée pour obtenir le spectre d'absorption, d'émission, la photoconductivité ou la diffusion Raman dans l'infrarouge d'un échantillon solide, liquide ou gazeux. Un spectromètre FTIR permet de collecter simultanément les données spectrales sur un spectre large.
OptiqueL'optique est la branche de la physique qui traite de la lumière, de son comportement et de ses propriétés, du rayonnement électromagnétique à la vision en passant par les systèmes utilisant ou émettant de la lumière. Du fait de ses propriétés ondulatoires, le domaine de la lumière peut couvrir le lointain UV jusqu'au lointain IR en passant par les longueurs d'onde visibles. Ces propriétés recouvrent alors le domaine des ondes radio, micro-ondes, des rayons X et des radiations électromagnétiques.
Polarisation (optique)La polarisation est une propriété qu'ont les ondes vectorielles (ondes qui peuvent osciller selon plus d'une orientation) de présenter une répartition privilégiée de l'orientation des vibrations qui les composent. Les ondes électromagnétiques, telles que la lumière, ou les ondes gravitationnelles ont ainsi des propriétés de polarisation. Les ondes mécaniques transverses dans les solides peuvent aussi être polarisées. Cependant, les ondes longitudinales (telles que les ondes sonores) ne sont pas concernées.
FDTDFDTD est l'acronyme de l'expression anglaise Finite Difference Time Domain. C'est une méthode de calcul de différences finies dans le domaine temporel, qui permet de résoudre des équations différentielles dépendantes du temps. Cette méthode est couramment utilisée en électromagnétisme pour résoudre les équations de Maxwell. Cette méthode a été proposée par Kane S. Yee en 1966. Différences finies Méthode des différences finies Kane Yee, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Transactions on Antennas and Propagation, 14, 1966, S.
Nanoélectroniquevignette|Structure d'un transistor FinFET La nanoélectronique fait référence à l'utilisation des nanotechnologies dans la conception des composants électroniques, tels que les transistors. Bien que le terme de nanotechnologie soit généralement utilisé pour des technologies dont la taille est inférieure à environ , la nanoélectronique concerne des composants si petits qu'il est nécessaire de prendre en compte les interactions interatomiques et les phénomènes quantiques.
Méthode des différences finiesEn analyse numérique, la méthode des différences finies est une technique courante de recherche de solutions approchées d'équations aux dérivées partielles qui consiste à résoudre un système de relations (schéma numérique) liant les valeurs des fonctions inconnues en certains points suffisamment proches les uns des autres. Cette méthode apparaît comme étant la plus simple à mettre en œuvre car elle procède en deux étapes : d'une part la discrétisation par différences finies des opérateurs de dérivation/différentiation, d'autre part la convergence du schéma numérique ainsi obtenu lorsque la distance entre les points diminue.
Sinusoidal plane waveIn physics, a sinusoidal plane wave is a special case of plane wave: a field whose value varies as a sinusoidal function of time and of the distance from some fixed plane. It is also called a monochromatic plane wave, with constant frequency (as in monochromatic radiation). For any position in space and any time , the value of such a field can be written as where is a unit-length vector, the direction of propagation of the wave, and "" denotes the dot product of two vectors.