Linear least squaresLinear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals. Numerical methods for linear least squares include inverting the matrix of the normal equations and orthogonal decomposition methods. The three main linear least squares formulations are: Ordinary least squares (OLS) is the most common estimator.
Cadre ZachmanLe cadre Zachman est un cadre d'architecture d'entreprise qui permet d'une manière formelle et hautement structurée de définir le système d'information d'une entreprise. Il utilise un modèle de classification à deux dimensions basé sur : six interrogations de base : Quoi, Comment, Où, Qui, Quand, et Pourquoi (What, How, Where, Who, When, Why), qui croisent six types de modèles distincts qui se rapportent à des groupes de parties prenantes : Visionnaire, Propriétaire, Concepteur, Réalisateur, Sous-traitant et Exécutant (visionary, owner, designer, builder, implementer, worker) pour présenter une vue holistique de l'entreprise qui est modélisée.
Méthode des moindres carrés ordinairevignette|Graphique d'une régression linéaire La méthode des moindres carrés ordinaire (MCO) est le nom technique de la régression mathématique en statistiques, et plus particulièrement de la régression linéaire. Il s'agit d'un modèle couramment utilisé en économétrie. Il s'agit d'ajuster un nuage de points selon une relation linéaire, prenant la forme de la relation matricielle , où est un terme d'erreur.
Traitement du signalLe traitement du signal est la discipline qui développe et étudie les techniques de traitement, d'analyse et d' des . Parmi les types d'opérations possibles sur ces signaux, on peut dénoter le contrôle, le filtrage, la compression et la transmission de données, la réduction du bruit, la déconvolution, la prédiction, l'identification, la classification Bien que cette discipline trouve son origine dans les sciences de l'ingénieur (particulièrement l'électronique et l'automatique), elle fait aujourd'hui largement appel à de nombreux domaines des mathématiques, comme la , les processus stochastiques, les espaces vectoriels et l'algèbre linéaire et des mathématiques appliquées, notamment la théorie de l'information, l'optimisation ou encore l'analyse numérique.
Système invariantUn processus transformant un signal d’entrée en un signal de sortie (signaux électriques par exemple) est appelé système invariant (ou stationnaire) lorsqu’une translation du temps appliquée à l’entrée se retrouve à la sortie. Dans ce sens, la sortie ne dépend pas explicitement du temps. Si au signal d'entrée , un système invariant associe une sortie , alors quel que soit le décalage temporel appliqué à l'entrée, le système associe au signal la sortie décalée .
Moindres carrés non linéairesLes moindres carrés non linéaires est une forme des moindres carrés adaptée pour l'estimation d'un modèle non linéaire en n paramètres à partir de m observations (m > n). Une façon d'estimer ce genre de problème est de considérer des itérations successives se basant sur une version linéarisée du modèle initial. Méthode des moindres carrés Considérons un jeu de m couples d'observations, (x, y), (x, y),...,(x, y), et une fonction de régression du type y = f (x, β).
Linear time-invariant systemIn system analysis, among other fields of study, a linear time-invariant (LTI) system is a system that produces an output signal from any input signal subject to the constraints of linearity and time-invariance; these terms are briefly defined below. These properties apply (exactly or approximately) to many important physical systems, in which case the response y(t) of the system to an arbitrary input x(t) can be found directly using convolution: y(t) = (x ∗ h)(t) where h(t) is called the system's impulse response and ∗ represents convolution (not to be confused with multiplication).
DébruitageLe débruitage est une technique d'édition qui consiste à supprimer des éléments indésirables (« bruit »), afin de rendre un document, un signal (numérique ou analogique) ou un environnement plus intelligible ou plus pur. Ne pas confondre le débruitage avec la réduction de bruit. Sur le plan sonore, le débruitage consiste à réduire ou anéantir le rendu d'ondes sonores « parasites » (ou « bruit »).
Digital image processingDigital image processing is the use of a digital computer to process s through an algorithm. As a subcategory or field of digital signal processing, digital image processing has many advantages over . It allows a much wider range of algorithms to be applied to the input data and can avoid problems such as the build-up of noise and distortion during processing. Since images are defined over two dimensions (perhaps more) digital image processing may be modeled in the form of multidimensional systems.
JPEG 2000JPEG 2000 ou ISO/CEI 15444-1, abrégé JP2 (quelquefois J2K), est une norme de compression d’ commune à l’ISO, la CEI et l’UIT-T, développée entre 1997 et 2000, et créée par le groupe de travail Joint Photographic Experts Group. Depuis mai 2015, il est officiellement reconnu par l'ISO / CEI et l'UIT-T sous le code ISO/IEC CD 15444. JPEG 2000 peut travailler avec ou sans perte, en utilisant des transformées en ondelettes (méthode d’analyse mathématique du signal), dont la décomposition est similaire à la transformée de Fourier à court terme.