Compacité (mathématiques)En topologie, on dit d'un espace qu'il est compact s'il est séparé et qu'il vérifie la propriété de Borel-Lebesgue. La condition de séparation est parfois omise et certains résultats demeurent vrais, comme le théorème des bornes généralisé ou le théorème de Tychonov. La compacité permet de faire passer certaines propriétés du local au global, c'est-à-dire qu'une propriété vraie au voisinage de chaque point devient valable de façon uniforme sur tout le compact.
Espace de Hilbertvignette|Une photographie de David Hilbert (1862 - 1943) qui a donné son nom aux espaces dont il est question dans cet article. En mathématiques, un espace de Hilbert est un espace vectoriel réel (resp. complexe) muni d'un produit scalaire euclidien (resp. hermitien), qui permet de mesurer des longueurs et des angles et de définir une orthogonalité. De plus, un espace de Hilbert est complet, ce qui permet d'y appliquer des techniques d'analyse. Ces espaces doivent leur nom au mathématicien allemand David Hilbert.
Blob detectionIn computer vision, blob detection methods are aimed at detecting regions in a that differ in properties, such as brightness or color, compared to surrounding regions. Informally, a blob is a region of an image in which some properties are constant or approximately constant; all the points in a blob can be considered in some sense to be similar to each other. The most common method for blob detection is convolution.
Estimation par noyauEn statistique, l’estimation par noyau (ou encore méthode de Parzen-Rosenblatt ; en anglais, kernel density estimation ou KDE) est une méthode non-paramétrique d’estimation de la densité de probabilité d’une variable aléatoire. Elle se base sur un échantillon d’une population statistique et permet d’estimer la densité en tout point du support. En ce sens, cette méthode généralise astucieusement la méthode d’estimation par un histogramme. Si est un échantillon i.i.d.
Modified discrete cosine transformThe modified discrete cosine transform (MDCT) is a transform based on the type-IV discrete cosine transform (DCT-IV), with the additional property of being lapped: it is designed to be performed on consecutive blocks of a larger dataset, where subsequent blocks are overlapped so that the last half of one block coincides with the first half of the next block. This overlapping, in addition to the energy-compaction qualities of the DCT, makes the MDCT especially attractive for signal compression applications, since it helps to avoid artifacts stemming from the block boundaries.
Espace localement compactEn topologie, un espace localement compact est un espace séparé qui admet des voisinages compacts pour tous ses points. Un tel espace n'est pas nécessairement compact lui-même mais on peut y généraliser (au moins partiellement) beaucoup de résultats sur les espaces compacts. Ce sont aussi les espaces qu'on peut « rendre » compacts avec un point grâce à la compactification d'Alexandrov. La compacité est une source très fertile de résultats en topologie mais elle reste une propriété très contraignante.
Kernel regressionIn statistics, kernel regression is a non-parametric technique to estimate the conditional expectation of a random variable. The objective is to find a non-linear relation between a pair of random variables X and Y. In any nonparametric regression, the conditional expectation of a variable relative to a variable may be written: where is an unknown function. Nadaraya and Watson, both in 1964, proposed to estimate as a locally weighted average, using a kernel as a weighting function.
Astuce du noyauEn apprentissage automatique, l'astuce du noyau, ou kernel trick en anglais, est une méthode qui permet d'utiliser un classifieur linéaire pour résoudre un problème non linéaire. L'idée est de transformer l'espace de représentation des données d'entrées en un espace de plus grande dimension, où un classifieur linéaire peut être utilisé et obtenir de bonnes performances. La discrimination linéaire dans l'espace de grande dimension (appelé aussi espace de redescription) est équivalente à une discrimination non linéaire dans l'espace d'origine.
Base de SchauderEn analyse fonctionnelle (mathématique), la notion de base de Schauder est une généralisation de celle de base (algébrique). La différence vient du fait que dans une base algébrique, on considère des combinaisons linéaires finies d'éléments, alors que pour des bases de Schauder elles peuvent être infinies. Ceci en fait un outil plus adapté pour l'analyse des espaces vectoriels topologiques de dimension infinie, en particulier les espaces de Banach. Les bases de Schauder furent introduites en 1927 par Juliusz Schauder, qui explicita un exemple pour C([0, 1]).
MultirésolutionA multiresolution analysis (MRA) or multiscale approximation (MSA) is the design method of most of the practically relevant discrete wavelet transforms (DWT) and the justification for the algorithm of the fast wavelet transform (FWT). It was introduced in this context in 1988/89 by Stephane Mallat and Yves Meyer and has predecessors in the microlocal analysis in the theory of differential equations (the ironing method) and the s of as introduced in 1981/83 by Peter J. Burt, Edward H. Adelson and James L.