Microscope optique en champ procheLe microscope optique en champ proche (MOCP, ou SNOM pour scanning near-field optical microscope ou NSOM pour near-field scanning optical microscopy) ou microscope optique à sonde locale (MOSL) est un type de microscope à sonde locale qui permet d'imager des objets à partir de la détection des ondes évanescentes confinées au voisinage de leur surface (détection en champ proche optique). Le MOCP permet de compenser la diffraction, une des limitations de la microscopie optique.
Microscope optiqueLe microscope optique ou microscope photonique est un instrument d'optique muni d'un objectif et d'un oculaire qui permet de grossir l'image d'un objet de petites dimensions (ce qui caractérise sa puissance optique) et de séparer les détails de cette image (et son pouvoir de résolution) afin qu'il soit observable par l'œil humain. Il est utilisé en biologie, pour observer les cellules, les tissus, en pétrographie pour reconnaître les roches, en métallurgie et en métallographie pour examiner la structure d'un métal ou d'un alliage.
Tenseur électromagnétiqueLe tenseur électromagnétique, ou tenseur de Maxwell est le nom de l'objet mathématique décrivant la structure du champ électromagnétique en un point donné. Le tenseur électromagnétique est aussi connu comme : le tenseur d'intensité du champ électromagnétique ; le tenseur du champ magnétique ; le tenseur de Maxwell ; le tenseur de Faraday. Ce tenseur est défini dans le cadre du formalisme mathématique de la relativité restreinte, où aux trois dimensions spatiales est adjointe une dimension temporelle.
MicroscopeUn microscope est un instrument scientifique utilisé pour observer des objets trop petits pour être vus à l'œil nu. La microscopie est la science de l'étude de petits objets et structures à l'aide d'un tel instrument. Le microscope est un outil important en biologie, médecine et science des matériaux dès que les facteurs de grossissement d'une loupe se révèlent insuffisants. Les principes physiques utilisés pour l'effet de grossissement peuvent être de nature très différente.
Near and far fieldThe near field and far field are regions of the electromagnetic (EM) field around an object, such as a transmitting antenna, or the result of radiation scattering off an object. Non-radiative near-field behaviors dominate close to the antenna or scattering object, while electromagnetic radiation far-field behaviors dominate at greater distances. Far-field E (electric) and B (magnetic) field strength decreases as the distance from the source increases, resulting in an inverse-square law for the radiated power intensity of electromagnetic radiation.
Microscope à effet tunnelthumb|Atomes de silicium à la surface d'un cristal de carbure de silicium (SiC). Image obtenue à l'aide d'un STM. Le microscope à effet tunnel (en anglais, scanning tunneling microscope, STM) est inventé en 1981 par des chercheurs d'IBM, Gerd Binnig et Heinrich Rohrer, qui reçurent le prix Nobel de physique pour cette invention en 1986. C'est un microscope en champ proche qui utilise un phénomène quantique, l'effet tunnel, pour déterminer la morphologie et la densité d'états électroniques de surfaces conductrices ou semi-conductrices avec une résolution spatiale pouvant être égale ou inférieure à la taille des atomes.
Rayonnement électromagnétiquethumb|Répartition du rayonnement électromagnétique par longueur d'onde. Le rayonnement électromagnétique est une forme de transfert d'énergie linéaire. La lumière visible est un rayonnement électromagnétique, mais ne constitue qu'une petite tranche du large spectre électromagnétique. La propagation de ce rayonnement, d'une ou plusieurs particules, donne lieu à de nombreux phénomènes comme l'atténuation, l'absorption, la diffraction et la réfraction, le décalage vers le rouge, les interférences, les échos, les parasites électromagnétiques et les effets biologiques.
Microscopie à sonde localeLa microscopie à sonde locale (MSL) ou microscopie en champ proche (MCP) ou scanning probe microscopy (SPM) en anglais est une technique de microscopie permettant de cartographier le relief (nano-topographie) ou une autre grandeur physique en balayant la surface à imager à l'aide d'une pointe très fine (la pointe est idéalement un cône se terminant par un seul atome). Le pouvoir de résolution obtenu par cette technique permet d'observer jusqu'à des atomes, ce qui est physiquement impossible avec un microscope optique, quel que soit son grossissement.
Densité de courantLa densité de courant, ou densité volumique de courant, est un vecteur qui décrit le courant électrique à l'échelle locale, en tout point d'un système physique. Dans le Système international d'unités, son module s'exprime en ampères par mètre carré ( ou ). À l'échelle du système tout entier il s'agit d'un champ de vecteurs, puisque le vecteur densité de courant est défini en tout point.
Microscopie électronique à balayagethumb|right|Premier microscope électronique à balayage par M von Ardenne thumb|right|Microscope électronique à balayage JEOL JSM-6340F thumb|upright=1.5|Principe de fonctionnement du Microscope Électronique à Balayage La microscopie électronique à balayage (MEB) ou scanning electron microscope (SEM) en anglais est une technique de microscopie électronique capable de produire des images en haute résolution de la surface d’un échantillon en utilisant le principe des interactions électrons-matière.