Hélice alphathumb|redresse|Exemple d'hélice alpha. L’hélice alpha (hélice α) est une structure secondaire courante des protéines. Elle est formée par une chaîne polypeptidique de forme hélicoïdale à pas de rotation droit dans laquelle chaque groupe N-H de la chaîne principale d'un acide aminé forme une liaison hydrogène avec le groupe C=O de la chaîne principale du quatrième acide aminé le précédant. Cette structure secondaire est parfois appelée hélice α de Pauling-Corey-Branson.
Microscope électroniquethumb|Microscope électronique construit par Ernst Ruska en 1933.thumb|Collection de microscopes électroniques anciens (National Museum of Health & Medicine). Un microscope électronique (ME) est un type de microscope qui utilise un faisceau d'électrons pour illuminer un échantillon et en créer une très agrandie. Il est inventé en 1931 par des ingénieurs allemands. Les microscopes électroniques ont un pouvoir de résolution supérieur aux microscopes optiques qui utilisent des rayonnements électromagnétiques visibles.
PhotoluminescenceLa photoluminescence (PL) est un processus par lequel une substance absorbe des photons puis ré-émet des photons. Dans le cas d'un semi-conducteur, le principe est d'exciter des électrons de la bande de valence avec un photon d'une énergie supérieure à l'énergie de gap du composé, de telle sorte qu'ils se retrouvent dans la bande de conduction. L'excitation fait donc passer les électrons vers un état d'énergie supérieure avant qu'ils ne reviennent vers un niveau énergétique plus bas avec émission d'un photon.
Motif structurelEn biochimie, un motif structurel, également écrit motif structural, est un arrangement tridimensionnel d'au moins deux structures secondaires de biopolymères, tels que des protéines ou des acides nucléiques, ayant une signification fonctionnelle ou faisant partie d'un domaine protéique. Les motifs structurels des protéines sont souvent conservés au cours de l'évolution et peuvent être le signe de similitudes fonctionnelles entre protéines partageant un même motif structurel ; il n'est cependant pas possible de déduire la fonction biologique d'une protéine sur la base de ses seuls motifs structurels, qui ne sont de surcroît pas toujours directement déductibles de leurs motifs séquentiels.
ComonomerIn polymer chemistry, a comonomer refers to a polymerizable precursor to a copolymer aside from the principal monomer. In some cases, only small amounts of a comonomer are employed, in other cases substantial amounts of comonomers are used. Furthermore, in some cases, the comonomers are statistically incorporated within the polymer chain, whereas in other cases, they aggregate. The distribution of comonomers is referred to as the "blockiness" of a copolymer. 1-Octene, 1-hexene, and 1-butene are used comonomers in the manufacture of polyethylenes.
Auto-organisationL'auto-organisation ou autoorganisation est un phénomène par lequel un système s'organise lui-même. Les systèmes physiques, biologiques ou écologiques, sociaux, ont tendance à s'organiser d'eux-mêmes. Il s'agit soit de l'organisation initiale du système lors de son émergence spontanée, soit lorsque le système existe déjà de l'apparition d'une organisation plus ou complexe. L'auto-organisation agit ainsi à l'encontre de l'entropie (on parle alors de néguentropie), qui est une mesure de désordre.
ConformérieEn chimie, la conformérie est une forme de stéréoisomérie décrivant le fait qu'une même molécule existe sous la forme de plusieurs conformères (ou isomères de conformation) à la suite de la rotation des atomes autour de liaisons chimiques simples. On parle surtout de conformérie en chimie organique, pour des rotations autour des liaisons carbone-carbone. Il existe trois principaux facteurs qui rendent certains conformères plus stables que les autres : L'interaction entre une liaison σ et le lobe orbital arrière d'une liaison σ∗ voisine : cela n'est possible que lorsque les deux liaisons sont décalées.
Diffusion des rayons XLa diffusion des rayons X (X-ray scattering en anglais) est une technique d'analyse basée sur la diffusion des ondes de rayons X par une substance. Alors que la diffraction des rayons X ne peut être utilisée qu'avec des substances cristallines, la diffusion des rayons X peut être utilisée pour des substances cristallines ou amorphes. La diffusion des rayons X est basée sur l'interaction des rayons X avec les électrons des atomes. La diffusion des rayons X peut être élastique ou inélastique.
Élastomère thermoplastiqueLes élastomères thermoplastiques (TPE) sont une famille de copolymères (souvent à blocs) ou de mélanges mécaniques de polymères (mélanges « polymère-polymère », souvent un polymère thermoplastique et un élastomère) dont les membres combinent les propriétés élastiques des élastomères et le caractère thermoplastique (ils fondent et durcissent, de manière réversible, sous l'action de la chaleur). Ce dernier caractère leur confère un moulage plus aisé, ce qui permet au transformateur l'utilisation des procédés de mise en forme des polymères thermoplastiques (injection, extrusion, soufflage ou surmoulage).
Hélice de collagèneL'hélice de collagène est une forme essentielle de la structure secondaire du collagène. Il s'agit d'une triple hélice polypeptidique constituée de la séquence répétée d'acides aminés Gly–X–Y, où X et Y sont souvent des résidus de proline ou d'hydroxyproline. La glycine, la proline et l'hydroxyproline doivent être à la bonne place et le groupe hydroxyle doit avoir la configuration appropriée. Ainsi, l'hydroxyproline accroît la stabilité thermique de la triple hélice lorsqu'elle est située en position Y, mais pas lorsqu'elle est située en position X.