Model selectionModel selection is the task of selecting a model from among various candidates on the basis of performance criterion to choose the best one. In the context of learning, this may be the selection of a statistical model from a set of candidate models, given data. In the simplest cases, a pre-existing set of data is considered. However, the task can also involve the design of experiments such that the data collected is well-suited to the problem of model selection.
Prise de décisionvignette|Lorsqu'il s'agit de prendre une décision, il est bon de savoir que des situations différentes nécessitent une approche différente. Il n'y a pas de façon unique de penser/d'agir. la plupart du temps, nous errons dans l'espace du désordre, sans savoir ce qui se passe, sans savoir comment agir. Dans ce cas, nous avons tendance à entrer dans l'espace avec lequel nous nous sentons le plus à l'aise et à commencer à agir. Lorsque vous avez trouvé le Saint Graal, la solution unique pour chaque problème, vous feriez mieux de faire attention.
Predictive modellingPredictive modelling uses statistics to predict outcomes. Most often the event one wants to predict is in the future, but predictive modelling can be applied to any type of unknown event, regardless of when it occurred. For example, predictive models are often used to detect crimes and identify suspects, after the crime has taken place. In many cases, the model is chosen on the basis of detection theory to try to guess the probability of an outcome given a set amount of input data, for example given an email determining how likely that it is spam.
Relative likelihoodIn statistics, when selecting a statistical model for given data, the relative likelihood compares the relative plausibilities of different candidate models or of different values of a parameter of a single model. Assume that we are given some data x for which we have a statistical model with parameter θ. Suppose that the maximum likelihood estimate for θ is . Relative plausibilities of other θ values may be found by comparing the likelihoods of those other values with the likelihood of .
Statistical model specificationIn statistics, model specification is part of the process of building a statistical model: specification consists of selecting an appropriate functional form for the model and choosing which variables to include. For example, given personal income together with years of schooling and on-the-job experience , we might specify a functional relationship as follows: where is the unexplained error term that is supposed to comprise independent and identically distributed Gaussian variables.
Critère d'information d'AkaikeLe critère d'information d'Akaike, (en anglais Akaike information criterion ou AIC) est une mesure de la qualité d'un modèle statistique proposée par Hirotugu Akaike en 1973. Lorsque l'on estime un modèle statistique, il est possible d'augmenter la vraisemblance du modèle en ajoutant un paramètre. Le critère d'information d'Akaike, tout comme le critère d'information bayésien, permet de pénaliser les modèles en fonction du nombre de paramètres afin de satisfaire le critère de parcimonie.
Likelihoodist statisticsLikelihoodist statistics or likelihoodism is an approach to statistics that exclusively or primarily uses the likelihood function. Likelihoodist statistics is a more minor school than the main approaches of Bayesian statistics and frequentist statistics, but has some adherents and applications. The central idea of likelihoodism is the likelihood principle: data are interpreted as evidence, and the strength of the evidence is measured by the likelihood function.
Théorie du regretLa théorie du regret ou de l'aversion au regret ou du regret anticipé est un modèle de théorie économique développé simultanément en 1982 par Graham Loomes et Robert Sugden, David E. Bell, et Peter C. Fishburn. Elle permet de développer des modèles de choix dans un contexte d'incertitude qui tiennent compte des effets anticipés du regret. Cette théorie a par la suite été développée par d'autres auteurs. Elle incorpore un terme regret dans la fonction d'utilité qui dépend négativement du produit obtenu et positivement du meilleur produit alternatif l'incertitude étant donnée.
Gestion de projetLa gestion de projet, est l'ensemble des activités visant à organiser le bon déroulement d’un projet et à en atteindre les objectifs en temps et en heures selon les objectifs visés. Elle consiste à appliquer les méthodes, techniques, et outils de gestion spécifiques aux différentes étapes du projet, de l'évaluation de l'opportunité jusqu'à l'achèvement du projet. Cette activité porte également le nom de conduite de projet, pilotage de projet, ingénierie de projet, ou encore management de projet.
Statistical assumptionStatistics, like all mathematical disciplines, does not infer valid conclusions from nothing. Inferring interesting conclusions about real statistical populations almost always requires some background assumptions. Those assumptions must be made carefully, because incorrect assumptions can generate wildly inaccurate conclusions. Here are some examples of statistical assumptions: Independence of observations from each other (this assumption is an especially common error). Independence of observational error from potential confounding effects.