In decision theory, on making decisions under uncertainty—should information about the best course of action arrive after taking a fixed decision—the human emotional response of regret is often experienced, and can be measured as the value of difference between a made decision and the optimal decision. The theory of regret aversion or anticipated regret proposes that when facing a decision, individuals might anticipate regret and thus incorporate in their choice their desire to eliminate or reduce this possibility. Regret is a negative emotion with a powerful social and reputational component, and is central to how humans learn from experience and to the human psychology of risk aversion. Conscious anticipation of regret creates a feedback loop that transcends regret from the emotional realm—often modeled as mere human behavior—into the realm of the rational choice behavior that is modeled in decision theory. Regret theory is a model in theoretical economics simultaneously developed in 1982 by Graham Loomes and Robert Sugden, David E. Bell, and Peter C. Fishburn. Regret theory models choice under uncertainty taking into account the effect of anticipated regret. Subsequently, several other authors improved upon it. It incorporates a regret term in the utility function which depends negatively on the realized outcome and positively on the best alternative outcome given the uncertainty resolution. This regret term is usually an increasing, continuous and non-negative function subtracted to the traditional utility index. These type of preferences always violate transitivity in the traditional sense, although most satisfy a weaker version. Several experiments over both incentivized and hypothetical choices attest to the magnitude of this effect. Experiments in first price auctions show that by manipulating the feedback the participants expect to receive, significant differences in the average bids are observed.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (2)
FIN-609: Asset Pricing (2011 - 2024)
This course provides an overview of the theory of asset pricing and portfolio choice theory following historical developments in the field and putting emphasis on theoretical models that help our unde
MATH-412: Statistical machine learning
A course on statistical machine learning for supervised and unsupervised learning
Séances de cours associées (22)
Bandits à bras multiples
Couvre le dilemme exploration vs exploitation dans les bandits multi-bras en utilisant l'algorithme Upper Confidence Bound.
Bandits multibras : exploration vs exploitation
Explore l'équilibre entre l'exploration et l'exploitation dans les algorithmes de bandit multi-bras.
Théorie statistique : cadre de la théorie de la décision
Explore le cadre de la théorie de la décision en théorie statistique, considérant les statistiques comme un jeu aléatoire avec des concepts clés tels que la recevabilité, les règles minimax et les règles Bayes.
Afficher plus
Publications associées (39)

Near-Minimax Optimal Estimation With Shallow ReLU Neural Networks

Rahul Parhi

We study the problem of estimating an unknown function from noisy data using shallow ReLU neural networks. The estimators we study minimize the sum of squared data-fitting errors plus a regularization term proportional to the squared Euclidean norm of the ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2023

Interventionist estimands in event history analysis

Matias Janvin

The presence of competing events, such as death, makes it challenging to define causal effects on recurrent outcomes. In this thesis, I formalize causal inference for recurrent events, with and without competing events. I define several causal estimands an ...
EPFL2023

Follow the Clairvoyant: an Imitation Learning Approach to Optimal Control

Giancarlo Ferrari Trecate, John Lygeros, Luca Furieri, Florian Dörfler, Andrea Martin

We consider control of dynamical systems through the lens of competitive analysis. Most prior work in this area focuses on minimizing regret, that is, the loss relative to an ideal clairvoyant policy that has noncausal access to past, present, and future d ...
Elsevier2023
Afficher plus
Concepts associés (5)
Info-gap decision theory
Info-gap decision theory seeks to optimize robustness to failure under severe uncertainty, in particular applying sensitivity analysis of the stability radius type to perturbations in the value of a given estimate of the parameter of interest. It has some connections with Wald's maximin model; some authors distinguish them, others consider them instances of the same principle. It has been developed by Yakov Ben-Haim, and has found many applications and described as a theory for decision-making under "severe uncertainty".
Théorie de l'utilité espérée
La théorie de l'utilité espérée (aussi appelée théorie EU, de l'anglais « expected utility ») est une théorie de la décision en environnement risqué développée par John von Neumann et Oskar Morgenstern dans leur ouvrage Theory of Games and Economic Behavior (1944). Introduisons d'abord quelques notations: L'incertitude est décrite par un ensemble d'états du monde partitionné par la famille de parties (de taille ). Un élément de est appelé événement. Une variable aléatoire est une fonction qui associe à chaque un résultat noté .
Algorithme minimax
L'algorithme minimax (aussi appelé algorithme MinMax) est un algorithme qui s'applique à la théorie des jeux pour les jeux à deux joueurs à somme nulle (et à information complète) consistant à minimiser la perte maximum (c'est-à-dire dans le pire des cas). Pour une vaste famille de jeux, le théorème du minimax de von Neumann assure l'existence d'un tel algorithme, même si dans la pratique il n'est souvent guère aisé de le trouver.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.