Le critère d'information d'Akaike, (en anglais Akaike information criterion ou AIC) est une mesure de la qualité d'un modèle statistique proposée par Hirotugu Akaike en 1973.
Lorsque l'on estime un modèle statistique, il est possible d'augmenter la vraisemblance du modèle en ajoutant un paramètre. Le critère d'information d'Akaike, tout comme le critère d'information bayésien, permet de pénaliser les modèles en fonction du nombre de paramètres afin de satisfaire le critère de parcimonie. On choisit alors le modèle avec le critère d'information d'Akaike le plus faible.
Le critère d'information d'Akaike s'écrit comme suit :
où k est le nombre de paramètres à estimer du modèle et L est le maximum de la fonction de vraisemblance du modèle.
Si l'on considère un ensemble de modèles candidats, le modèle choisi est celui qui aura la plus faible valeur d'AIC. Ce critère repose donc sur un compromis entre la qualité de l'ajustement et la complexité du modèle, en pénalisant les modèles ayant un grand nombre de paramètres, ce qui limite les effets de sur-ajustement (augmenter le nombre de paramètre améliore nécessairement la qualité de l'ajustement).
L'AIC s'appuie sur la théorie de l'information : il propose une estimation de la perte d'information lorsqu'on utilise le modèle considéré pour représenter le processus qui génère les données. L'AIC ne fournit pas un test de modèle dans le sens d'une hypothèse nulle, c'est-à-dire que ce test ne dit rien de la qualité absolue du modèle. Il ne rendrait ainsi pas compte du fait que tous les modèles candidats ne produisent pas de bons ajustements.
Plus précisément, supposons que les données soient générées par un processus inconnu f. On considère deux modèles candidats pour représenter f: g1 et g2. Si f était connu, alors l'information perdue en utilisant g1 pour représenter f serait également connue en calculant la divergence de Kullback-Leibler DKL(f ‖ g1). De la même façon, l'information perdue en représentant f par g2 serait DKL(f ‖ g2). On choisirait alors le meilleur modèle en minimisant l'information perdue.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Statistics lies at the foundation of data science, providing a unifying theoretical and methodological backbone for the diverse tasks enountered in this emerging field. This course rigorously develops
This course provides the students with 1) a set of theoretical concepts to understand the machine learning approach; and 2) a subset of the tools to use this approach for problems arising in mechanica
Model selection is the task of selecting a model from among various candidates on the basis of performance criterion to choose the best one. In the context of learning, this may be the selection of a statistical model from a set of candidate models, given data. In the simplest cases, a pre-existing set of data is considered. However, the task can also involve the design of experiments such that the data collected is well-suited to the problem of model selection.
In statistics, deviance is a goodness-of-fit statistic for a statistical model; it is often used for statistical hypothesis testing. It is a generalization of the idea of using the sum of squares of residuals (SSR) in ordinary least squares to cases where model-fitting is achieved by maximum likelihood. It plays an important role in exponential dispersion models and generalized linear models. Deviance can be related to Kullback-Leibler divergence.
En statistiques, le test du rapport de vraisemblance est un test statistique qui permet de tester un modèle paramétrique contraint contre un non contraint. Si on appelle le vecteur des paramètres estimés par la méthode du maximum de vraisemblance, on considère un test du type : contre On définit alors l'estimateur du maximum de vraisemblance et l'estimateur du maximum de vraisemblance sous .
The electron self-interaction is a long-standing problem in density functional theory and is particularly critical in the description of polarons. Polarons are quasiparticles involving charge localization coupled with self-induced lattice distortions. Sinc ...
EPFL2023
,
The Obukhov-Corrsin theory of scalar turbulence [21, 54] advances quantitative predictions on passive-scalar advection in a turbulent regime and can be regarded as the analogue for passive scalars of Kolmogorov's K41 theory of fully developed turbulence [4 ...
SporTran is a Python utility designed to estimate generic transport coefficients in extended systems, based on the Green-Kubo theory of linear response and the recently introduced cepstral analysis of the current time series generated by molecular dynamics ...