Shear strength (soil)Shear strength is a term used in soil mechanics to describe the magnitude of the shear stress that a soil can sustain. The shear resistance of soil is a result of friction and interlocking of particles, and possibly cementation or bonding of particle contacts. Due to interlocking, particulate material may expand or contract in volume as it is subject to shear strains. If soil expands its volume, the density of particles will decrease and the strength will decrease; in this case, the peak strength would be followed by a reduction of shear stress.
Module de cisaillementEn résistance des matériaux, le module de cisaillement, module de glissement, module de rigidité, module de Coulomb ou second coefficient de Lamé, est une grandeur physique intrinsèque à chaque matériau et qui intervient dans la caractérisation des déformations causées par des efforts de cisaillement. La définition du module de rigidité , parfois aussi noté μ, estoù (voir l'image ci-contre) est la contrainte de cisaillement, la force, l'aire sur laquelle la force agit, le déplacement latéral relatif et l'écart à l'angle droit, le déplacement latéral et enfin l'épaisseur.
ExergieEn thermodynamique, l’exergie est une grandeur physique permettant de mesurer la qualité d'une énergie. C'est la partie utilisable d'un joule. Le travail maximal récupérable est ainsi égal à l’opposé de la variation d’exergie au cours de la transformation. Un système à l'équilibre thermomécanique ou chimique n'a plus aucune valeur. Plus un système est loin de l'équilibre ambiant, plus il est apte à opérer un changement, aptitude sur laquelle repose l'utilité d'une énergie.
Thermodynamique hors équilibreLa thermodynamique hors équilibre est le domaine de recherche étudiant les phénomènes de relaxation et de transport au voisinage de l'équilibre thermodynamique. Il s'agit là de phénomènes dissipatifs donc irréversibles, liés à une augmentation de l'entropie. Les méthodes présentées ici relèvent de la thermodynamique proprement dite, qui permet de donner les lois caractérisant un phénomène.
Flexion (matériau)En physique (mécanique), la flexion est la déformation d'un objet sous l'action d'une charge. Elle se traduit par une courbure. Dans le cas d'une poutre, elle tend à rapprocher ses deux extrémités. Dans le cas d'une plaque, elle tend à rapprocher deux points diamétralement opposés sous l'action. L'essai de flexion d'une poutre est un essai mécanique utilisé pour tester la résistance en flexion. On utilise la flexion dite « trois points » et la flexion dite « quatre points ».
Dilatancevignette|Réponse typique d'un sable dense soumis à l'essai triaxial : on représente ici la différence de contraintes normales en fonction de la déformation verticale. Le phénomène de dilatance d'un sol décrit la variation de volume que l'on observe dans les matériaux granulaires lorsqu'ils sont soumis à un cisaillement. Cet effet a été décrit scientifiquement pour la première fois par Osborne Reynolds en 1885-86. Contrairement à la plupart des autres matériaux solides, un matériau granulaire compacté tend à se dilater (à s'expandre en volume) lorsqu'on le cisaille.
Treillis (assemblage)Un treillis, ou système triangulé, est un assemblage de barres verticales, horizontales et diagonales formant des triangles, de sorte que chaque barre subisse un effort acceptable, et que la déformation de l'ensemble soit modérée. Cette structure est devenue courante en construction à partir de la révolution industrielle, pour des ponts, fuselages d'avion En effet, un tel assemblage allie résistance, rigidité et légèreté, et permet d'utiliser des éléments normalisés (barres) ; par ailleurs, le treillis peut éventuellement être préassemblé.
Taux sans risqueUn taux sans risque dans une devise et pour une période particulière est le taux d'intérêt constaté sur le marché des emprunts d'État de pays considérés solvables et d'organisations intergouvernementales pour la même devise et la même période. On désigne donc ainsi l'absence théorique de risque de crédit, et non une quelconque absence de risque de taux, qui lui demeure bien présent. Il est toutefois à noter qu'un État peut faire faillite. Comme pour tous les taux d'intérêt, il convient de préciser quelles bases et conventions de calcul s'appliquent.
Microscopie électronique en transmissionvignette|upright=1.5|Principe de fonctionnement du microscope électronique en transmission. vignette|Un microscope électronique en transmission (1976). La microscopie électronique en transmission (MET, ou TEM pour l'anglais transmission electron microscopy) est une technique de microscopie où un faisceau d'électrons est « transmis » à travers un échantillon très mince. Les effets d'interaction entre les électrons et l'échantillon donnent naissance à une image, dont la résolution peut atteindre 0,08 nanomètre (voire ).
Taux d'intérêtLe taux d'intérêt d'un prêt ou d'un emprunt fixe la rémunération du capital prêté (exprimée en pourcentage du montant prêté) versée par l'emprunteur au prêteur. Le taux et les modalités de versement de cette rémunération sont fixés lors de la conclusion du contrat de prêt. Ce pourcentage tient compte de la durée du prêt, de la nature des risques encourus et des garanties offertes par le prêteur. Les taux d'intérêt sont utilisés dans de multiples domaines, des instruments financiers jusqu'aux produits d'épargne (compte d'épargne), en passant par les obligations.