Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En mathématiques, le 'test de primalité de Miller-Rabin' est un test de primalité probabiliste, de type Monte Carlo : étant donné un nombre entier, il donne une réponse oui/non pour conclure soit de façon certaine que celui-ci est composé, soit qu'il est probablement premier. La probabilité qu'un nombre déclaré premier par l'algorithme soit en réalité composé peut être rendue aussi faible que souhaité, en fonction des paramètres d'entrées de l'algorithme.
vignette|Le 39e nombre premier de Mersenne découvert à ce jour pour un article sur la primalité Un test de primalité est un algorithme permettant de savoir si un nombre entier est premier. Le test le plus simple est celui des divisions successives : pour tester N, on vérifie s’il est divisible par l’un des entiers compris au sens large entre 2 et N-1. Si la réponse est négative, alors N est premier, sinon il est composé.
Le test de primalité AKS (aussi connu comme le test de primalité Agrawal-Kayal-Saxena et le test cyclotomique AKS) est un algorithme de preuve de primalité déterministe et généraliste (fonctionne pour tous les nombres) publié le par trois scientifiques indiens nommés Manindra Agrawal, Neeraj Kayal et Nitin Saxena (A.K.S). Ce test est le premier en mesure de déterminer la primalité d'un nombre dans un temps polynomial. Ce test a été publié dans un article scientifique intitulé « PRIMES is in P ».